Рубрика «machine learning» - 42

AgeHack — первый онлайн-хакатон по продлению жизни на платформе MLBootCamp - 1

Сегодня, 15 июня, стартует чемпионат на платформе ML Boot Camp, посвященный проблемам здравоохранения и долголетия человечества. Чемпионат организован нами совместно с Insilico Medicine в сотрудничестве с Республиканским центром электронного здравоохранения при Министерстве здравоохранения Республики Казахстан. О том, почему это не очень обычный для нас конкурс — под катом.

Читать полностью »

Машинное обучение и анализ данных: решаем практические задачи с победителями индустриального хакатона ЛК - 1

Как вычислить замыслы киберпреступников, атакующих промышленный объект и распознать слабые сигналы SOS, которые периодически подает индустриальная АСУ ТП на фоне “нормального” поведения, – об этом и многом другом поговорим уже в ближайшую среду, 7 июня, на встрече CoLaboratory: Deep Learning в центральном офисе “Лаборатории Касперского”. Всех неравнодушных к теме промышленной безопасности ждет захватывающее погружение в мир машинного обучения и анализа данных под руководством победителей весеннего индустриального хакатона ЛК и экспертов нашей компании.
Читать полностью »

Обзор исследований в области глубокого обучения: обработка естественных языков - 1

Это третья статья из серии “Обзор исследований в области глубокого обучения” (Deep Learning Research Review) студента Калифорнийского университета в Лос-Анджелесе Адита Дешпанда (Adit Deshpande). Каждые две недели Адит публикует обзор и толкование исследований в определенной области глубинного обучения. В этот раз он сосредоточил свое внимание на применении глубокого обучения для обработки текстов на естественном языке.
Читать полностью »

Решалась задача анализа текущих предложений на минском рынке недвижимости с целью поиска недооцененных квартир. В качестве источника информации был выбран сайт риэлтерского агентства "Твоя столица".

Читать полностью »

Индустриальный митап #3: в фокусе – безопасная автоматизация техпроцессов - 1

1 июня в московском офисе «Лаборатории Касперского» в рамках платформы CoLaboratory пройдет третья встреча, посвященная индустриальной безопасности, а именно — защите АСУ ТП. Мы обсудим особенности и технологии ИБ-процессов на производстве, начиная от общих советов по поиску дыр в системе и заканчивая методами машинного обучения для обнаружения аномалий. Отдельное внимание будет уделено специальному проекту, выявляющему уязвимости за вас. Наших гостей ждут три доклада.
Читать полностью »

Всем привет. Продолжаем собирать автомобильный автопилот на компьютерном зрении из гитхаба и палок (начало здесь). Сегодня подключаем к делу датчики движения смартфона (акселерометр, гироскоп и GPS приемник) на Android, осваиваем несложный sensor fusion и окончательно закрываем с кодом для сбора обучающей выборки. Бонусы — Android приложение для записи всех сенсоров синхронзированных с видео и больше часа размеченных данных в рамках импортозамещения иностранных конкурсов. Весь код по-прежнему на github.

Автопилот своими силами: sensor fusion с телефона и открытые обучающие данные - 1

Это трехосные MEMS акселерометр и гироскоп, они будут нам крайне полезны. Читать полностью »

Открытый курс машинного обучения. Тема 10. Градиентный бустинг. Часть 1 - 1

Всем привет! Настало время пополнить наш с вами алгоритмический арсенал.

Сегодня мы основательно разберем один из наиболее популярных и применяемых на практике алгоритмов машинного обучения — градиентный бустинг. Наша задача — основательно разобраться в бустинге, поэтому статья разбита на 2 части: сегодня мы разберем основную теорию алгоритма, а через 2 недели — практику.

О том, откуда у бустинга растут корни и что на самом деле творится под капотом алгоритма — в нашем красочном путешествии в мир бустинга под катом. Рванули!

Читать полностью »

Дорогие коллеги, спешим порадовать всех, кто неравнодушен к наукоемким задачам. Сегодня мы приготовили для вас перевод любопытной публикации от экспертов по базам данных из CERN, посвященный обучению и эксплуатации нейронных сетей с помощью Python и инструментария на базе Oracle PL/SQL.

Механизм подсчета нейронной сети в PL-SQL для распознавания рукописных цифр - 1

В этой статье вы найдете пример построения и развертывания базового механизма подсчета искусственной нейронной сети с использованием PL/SQL. Статья предназначена для учебных целей, в частности для практиков Oracle, которые хотят на конкретном примере познакомиться с нейронными сетями.
Читать полностью »

image

Привет!

В последнее время все чаще приходится наблюдать, что ожидания работодателей и потенциальных ученых по данными сильно отличаются. Компания, инвестируя в новые разработки в первую очередь ждет возврат на инвестиции, а не очередную модель. Специалист же, окончивший всевозможные курсы ждет на вход чистые и понятные данные, а на выходе хотел бы отдать модель прикрепив к ней метрики качества. А дальше «пусть менеджеры разбираются», как это все будет встроено в процесс и как именно полученная модель будет использоваться. В результате возникает пропасть и непонимание между бизнесом и учеными.

По факту оказывается, что модели сами по себе никому не нужны, а на деле приходится заниматься очень большим количеством рутинных задач.

Хотелось бы на обобщенных примерах (все совпадения с реальной жизнью случайны) показать, какие же на самом деле трудности приходится преодолевать, чтобы принести работодателю деньги. Наверное, после этого в аналитику данных люди будут идти более осознанно, попутно получая нужные для работы навыки, а не изучая очередную статью про алгоритм.
Читать полностью »

Искусственный интеллект и четвёртая промышленная революция (wiki) достигли значительного прогресса за последние несколько лет. Большинство из того, что можно использовать уже сейчас, разрабатывается для коммерческих и промышленных целей, как вы увидите в следующих постах. Научно-исследовательские институты и специализированные компании работают над достижением конечной цели создания ИИ (а именно, создание сильного искусственного интеллекта artificial general intelligence), разрабатывая открытые платформы и исследуя появившиеся этические вопросы. Существуют также несколько компаний, разрабатывающих ИИ-продукты для конечных потребителей, их мы и рассмотрим в рамках этого поста.

Создание искусственного интеллекта — это как взбираться на дерево, пытаясь добраться до Луны. Можно сообщать о стабильном прогрессе, вплоть до самой вершины дерева.

image

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js