Рубрика «machine learning» - 41

image Всем привет! Это уже четырнадцатый выпуск дайджеста на Хабрахабр о новостях из мира Python.

В сегодняшнем выпуске вы найдёте интересные материалы, касающиеся рефакторинга и тестирования, Docker, фреймворков и многого другого. Присылайте свои актуальные материалы, а также любые замечания и предложения, которые будут добавлены в ближайший дайджест.

А теперь к делу!
Читать полностью »

image

Сразу оговорюсь, что данный пост не несет большой технической нагрузки и должен восприниматься исключительно в режиме «пятничной истории». Кроме того, текст насыщен английскими словами, какие-то из них я не знаю как перевести, а какие-то просто не хочется переводить.

Краткое содержание первой части:
1. DSTL (научно-техническая лаборатория при министерстве обороны Великобритании) провела соревнование на Kaggle.
2. Соревнование закончилось 7 марта, результаты объявлены 14 марта.
3. Пять из десяти лучших команд — русскоговорящие, причем все они являются членами сообщества Open Data Science.
4. Призовой фонд в $100,000 разделили брутальный малазиец Kyle, команда Романа Соловьева и Артура Кузина, а также я и Сергей Мушинский.
5. По итогам были написаны блог-посты (мой пост, пост Артура, наш с Серегой пост на Kaggle), проведены выступления на митапах (мое выступление в Adroll, мое выстпление в H20.ai, выступление Артура в Yandex, выступление Евгения Некрасова в Mail.Ru Group), написан tech report на arxiv.

Организаторам понравилось качество предложенных решений, но не понравилось, сколько они за это соревнование отстегнули. В Каggle ушло $500k, в то время как призовые всего $100k.
Читать полностью »

Привет! 5 и 6 августа мы будем проводить внешний летний хакатон “A!Hack Summer”.

A!Hack Summer — хакатон Альфа-Банка 5 и 6 августа 2017 - 1

Если вам интересны такие вещи как Artificial Intelligence, Machine Learning, AR/VR, Data Science, вы умеете с ними работать и подумывали сделать что-то свое или знаете, как на базе этого сделать продукт для клиентов банка — заходите в Deworkacy (Москва, Берсеневская наб. 6 стр. 3) 5 и 6 августа.

А о том, для чего мы все это делаем, расскажет Владимир Урбанский, руководитель Альфа-Лаборатории.
Читать полностью »

image Всем привет! Это уже тринадцатый выпуск дайджеста на Хабрахабр о новостях из мира Python.

В сегодняшнем выпуске вы найдёте интересные материалы, касающиеся оптимизации Python, его внутренностей, Django, машинного обучения и многого другого. Присылайте свои актуальные материалы, а также любые замечания и предложения, которые будут добавлены в ближайший дайджест.

А теперь к делу!
Читать полностью »

Серию интервью с докладчиками PyCon Russia продолжает разговор с разработчиком-аналитиком из Тинькофф Банка Андреем Степановым. Мы поговорили с Андреем о месте Python в инфраструктуре банка, о машинном обучении и о технологии распознавания речи.

Интервью с программистом из Тинькофф Банка Андреем Степановым о языке Python и ML - 1
Читать полностью »

Отжиг и вымораживание: две свежие идеи, как ускорить обучение глубоких сетей - 1

В этом посте изложены две недавно опубликованные идеи, как ускорить процесс обучения глубоких нейронных сетей при увеличении точности предсказания. Предложенные (разными авторами) способы ортогональны друг другу, и могут использоваться совместно и по отдельности. Предложенные здесь способы просты для понимания и реализации. Собственно, ссылки на оригиналы публикаций:

Читать полностью »

На WWDC’17 Apple представила новый фреймворк для работы с технологиями машинного обучения Core ML. На основе него в iOS реализованы собственные продукты Apple: Siri, Camera и QuickType. Core ML позволяет упростить интеграцию машинного обучения в приложения и создавать различные «умные» функции с помощью пары строчек кода.

image

Читать полностью »

image Всем привет! Это уже двенадцатый выпуск дайджеста на Хабрахабр о новостях из мира Python.

В сегодняшнем выпуске вы найдёте интересные материалы, касающиеся внутренностей Python, машинного обучения, популярных фреймворков и многого другого. Присылайте свои актуальные материалы, а также любые замечания и предложения, которые будут добавлены в ближайший дайджест.

А теперь к делу!
Читать полностью »

Содержание

В позапрошлой части мы создали CVAE автоэнкодер, декодер которого умеет генерировать цифру заданного лейбла, мы также попробовали создавать картинки цифр других лейблов в стиле заданной картинки. Получилось довольно хорошо, однако цифры генерировались смазанными.
В прошлой части мы изучили, как работают GAN’ы, получив довольно четкие изображения цифр, однако пропала возможность кодирования и переноса стиля.

В этой части попробуем взять лучшее от обоих подходов путем совмещения вариационных автоэнкодеров (VAE) и генеративных состязающихся сетей (GAN).

Подход, который будет описан далее, основан на статье [Autoencoding beyond pixels using a learned similarity metric, Larsen et al, 2016].

Автоэнкодеры в Keras, Часть 6: VAE + GAN - 1

Иллюстрация из [1]
Читать полностью »

Содержание

(Из-за вчерашнего бага с перезалитыми картинками на хабрасторейдж, случившегося не по моей вине, вчера был вынужден убрать эту статью сразу после публикации. Выкладываю заново.)

При всех преимуществах вариационных автоэнкодеров VAE, которыми мы занимались в предыдущих постах, они обладают одним существенным недостатком: из-за плохого способа сравнения оригинальных и восстановленных объектов, сгенерированные ими объекты хоть и похожи на объекты из обучающей выборки, но легко от них отличимы (например, размыты).

Этот недостаток в куда меньшей степени проявляется у другого подхода, а именно у генеративных состязающихся сетейGAN’ов.

Формально GAN’ы, конечно, не относятся к автоэнкодерам, однако между ними и вариационными автоэнкодерами есть сходства, они также пригодятся для следующей части. Так что не будет лишним с ними тоже познакомиться.

Коротко о GAN

GAN’ы впервые были предложены в статье [1, Generative Adversarial Nets, Goodfellow et al, 2014] и сейчас очень активно исследуются. Наиболее state-of-the-art генеративные модели так или иначе используют adversarial.

Схема GAN:

Автоэнкодеры в Keras, Часть 5: GAN(Generative Adversarial Networks) и tensorflow - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js