Рубрика «machine learning» - 38

Машинное обучение в практике администрирования. Технология QoSmic - 1

В последнее время новостные ленты заполонили статьи о машинном обучении (ML; Machine Learning) и глубинном обучении (Deep Learning).

Действительно, за несколько лет исследователи существенно продвинулись в этом направлении – и, что важнее, общество стало готово к новым технологиям.

К сожалению, спекулируя на популярной теме машинного обучения, многие сосредоточились на совершенно ненужных человечеству областях его применения: генерации текстов и сценариев для безумных фильмов, написании картин в стиле известных художников и т.д. Часть подобных статей и вовсе скатывается до панических настроений вроде «скоро мы все останемся без работы».
Читать полностью »

image

Привет!
С этого выпуска мы начинаем хорошую традицию: каждый месяц будет выходить набор рецензий на некоторые научные статьи от членов сообщества Open Data Science из канала #article_essence. Хотите получать их раньше всех — вступайте в сообщество ODS!
Статьи выбираются либо из личного интереса, либо из-за близости к проходящим сейчас соревнованиям. Если вы хотите предложить свою статью или у вас есть какие-то пожелания — просто напишите в комментариях и мы постараемся всё учесть в дальнейшем.

Читать полностью »

Финансовыми сервисами уже активно пользуется поколение, привыкшее общаться в режиме чата. Клиентский опыт этой аудитории — в мессенджерах, и бизнесу приходится идти вслед за ней.

Своя платформа чат-ботов появилась в СберТехе благодаря внутреннему социальному проекту «Сбербанк-Попутчик», затем получила дальнейшее развитие в платежном боте.

Теперь же платформа дала начало сразу двум пилотным проектам — чат-боту на сайте и в мобильном приложении и более интеллектуальной системе анализа обратной связи от клиентов. Обо всем по порядку — под катом.

Как платформа чат-ботов наделяет разумом ИТ-проекты Сбербанка - 1

Читать полностью »

Привет! Меня зовут Кирилл и я алкоголик более 10 лет был менеджером в сфере ИТ. Я не всегда был таким: во время учебы в МФТИ писал код, иногда за вознаграждение. Но столкнувшись с суровой реальностью (в которой необходимо зарабатывать деньги, желательно побольше) пошел по наклонной — в менеджеры.

image

Но не все так плохо! С недавнего времени мы с партнерами целиком и полностью ушли в развитие своего стартапа: системы учета клиентов и клиентских заявок Okdesk. С одной стороны — больше свободы в выборе направления движения. Но с другой — нельзя просто так взять и заложить в бюджет "3-х разработчиков на 6 месяцев для проведение исследований и разработки прототипа для…". Много приходится делать самим. В том числе — непрофильные эксперименты, связанные с разработкой (т.е. те эксперименты, что не относятся к основной функциональности продукта).

Одним из таких экспериментов стала разработка алгоритма классификации клиентских заявок по текстам для дальнейшей маршрутизации на группу исполнителей. В этой статье я хочу рассказать, как "не программист" может за 1,5 месяца в фоновом режиме освоить python и написать незамысловатый ML-алгоритм, имеющий прикладную пользу.

Читать полностью »

image Всем привет! Это уже семнадцатый выпуск дайджеста на Хабрахабр о новостях из мира Python.

Присылайте свои актуальные материалы, а также любые замечания и предложения, которые будут добавлены в ближайший дайджест.

А теперь к делу!
Читать полностью »

Учим робота готовить пиццу. Часть 2: Состязание нейронных сетей - 1

Содержание

В прошлой части, удалось распарсить сайт Додо-пиццы и загрузить данные об ингредиентах, а самое главное — фотографии пицц. Всего в нашем распоряжении оказалось 20 пицц. Разумеется, формировать обучающие данные всего из 20 картинок не получится. Однако, можно воспользоваться осевой симметрией пиццы: выполнив вращение картинки с шагом в один градус и вертикальным отражением — позволяет превратить одну фотографию в набор из 720 изображений. Тоже мало, но всё же попытаемся.

Попробуем обучить Условный вариационный автоэнкордер (Conditional Variational Autoencoder), а потом перейдёт к тому, ради чего это всё и затевалось — генеративным cостязательным нейронным сетям (Generative Adversarial Networks).

Читать полностью »

В первой статье мы успели осознать, как легко и непринужденно ИИ впитывает человеческие предрассудки в логику своих моделей. Как я и обещала, выкладываю вторую часть перевода, в которой мы разберемся, как измерить и ослабить влияние расизма в ИИ с помощью простых методов.

Как создать расистский ИИ, даже не пытаясь. Часть 2 - 1

Напомню: мы закончили на том, что наш классификатор считал идею пойти в итальянский ресторан в 5 раз лучше, чем в мексиканский.

Читать полностью »

Gotta Torch?

PyTorch — современная библиотека глубокого обучения, развивающаяся под крылом Facebook. Она не похожа на другие популярные библиотеки, такие как Caffe, Theano и TensorFlow. Она позволяет исследователям воплощать в жизнь свои самые смелые фантазии, а инженерам с лёгкостью эти фантазии имплементировать.

Данная статья представляет собой лаконичное введение в PyTorch и предназначена для быстрого ознакомления с библиотекой и формирования понимания её основных особенностей и её местоположения среди остальных библиотек глубокого обучения.

Читать полностью »

Я познакомлю вас с полным туториалом на HTML5 с демо по алгоритму машинного обучения видеоигре Flappy Bird. Цель этого эксперимента — написать игровой контроллер искусственного интеллекта на основе нейросетей и генетического алгоритма.

То есть мы хотим создать ИИ-робота, который сможет учиться оптимальной игре во Flappy Bird. В результате наша маленькая птица сможет спокойно пролетать через препятствия. В наилучшем сценарии она не умрёт никогда.

Прочитав теорию, лежащую в основе этого проекта, можно скачать исходный код в конце этого туториала. Весь код написан на HTML5 с использованием фреймворка Phaser. Кроме того, мы использовали библиотеку Synaptic Neural Network для реализации нейросети, чтобы не создавать её с нуля.

Демо

Для начала посмотрите демо, чтобы оценить алгоритм в действии:

Алгоритм машинного обучения Flappy Bird - 1

Запустить в полноэкранном режиме
Читать полностью »

Привет!

В последнее время машинное обучение и data science в целом приобретают все большую популярность. Постоянно появляются новые библиотеки и для тренировки моделей машинного обучения может потребоваться совсем немного кода. В такой ситуации можно забыть, что машинное обучение — не самоцель, а инструмент для решения какой-либо задачи. Мало сделать работающую модель, не менее важно качественно презентовать результаты анализа или сделать работающий продукт.

Как сделать проект по распознаванию рукописных цифр с дообучением онлайн. Гайд для не совсем начинающих - 1

Я хотел бы рассказать о том, как создал проект по распознаванию рукописного ввода цифр с моделями, которые дообучаются на нарисованных пользователями цифрах. Используется две модели: простая нейронная сеть (FNN) на чистом numpy и сверточная сеть (CNN) на Tensorflow. Вы сможете узнать, как сделать практически с нуля следующее:

  • создать простой сайт с использованием Flask и Bootstrap;

  • разместить его на платформе Heroku;

  • реализовать сохранение и загрузку данных с помощью облака Amazon s3;

  • собрать собственный датасет;

  • натренировать модели машинного обучения (FNN и CNN);

  • сделать возможность дообучения этих моделей;

  • сделать сайт, который сможет распознавать нарисованные изображения;

Для полного понимания проекта желательно знать как работает deep learning для распознавания изображений, иметь базовые знания о Flask и немного разбираться в HTML, JS и CSS.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js