Рубрика «machine learning» - 16

Напиши свою песню за 10 минут (модуль textgenrnn Python3) - 1

Сегодня попробуем обучить свою собственную нейронную сеть, чтобы писала текст для песен. Обучающей выборкой будут тексты группы "Руки Вверх". Ничто не мешает чтобы поменять данные на тексты своих любимых групп. Для извлечения данных с веб-сайтов используем Python3 (модуль BeautifulSoup).

Задача будет состоять в том, чтобы выгрузить данные(тексты) c веб-сайтов а потом на их основе обучить нейронную сеть.

На самом деле, можно разбить работу на 2 этапа:
Этап 1: выгрузить и сохранить тексты песни в удобном формате.
Этап 2: обучить свою собственную нейронную сеть.

Читать полностью »

image

31 августа 2019г. Mail.ru Group и сообщество Open Data Science приглашают на Moscow Data Science Major. Это как Data Fest, только мини. Событие состоит из 8 тематических блоков докладов, 1 ML-тренировки и 8 часов ударной порции нетворкинга и знакомств. Знакомьтесь с программой и регистрируйтесь! Вход на событие бесплатный, по одобренной регистрации. Регистрация закрывается в 29 августа в 12:00.
Читать полностью »

Сделал подборку книг по Machine Learning для тех, кто хочет разобраться, что да как.
Добавляйте в закладки и делитесь с коллегами!

Книги по машинному обучению на русском

1. «Математические основы машинного обучения и прогнозирования» Владимир Вьюгин.

О чем

Сначала изучите азы статистической теории машинного обучения, игр с предсказаниями и прогнозирования с применением экспертной стратегии. Их основы прекрасно объясняет автор книги, доктор физико-математических наук Владимир Вьюгин. Пособие рассчитано на студентов и аспирантов и в доступной форме излагает математические основы, необходимые для дальнейшей работы с машинным обучением.

2. «Верховный алгоритм» Педро Домингос.

О чем

Книга, благодаря которой даже ничего не смыслящие в математике и статистике люди поймут, что такое алгоритмы машинного обучения и каково их применение в жизни. Профессор Педро Домингос рассказывает о пяти основных школах Machine Learning и о том, как они используют идеи из различных областей научного знания — нейробиологии, физики, статистики, биологии, — чтобы помогать людям решать сложные задачи и упрощать рутину с помощью алгоритмов.
Читать полностью »

Не секрет, что ученые очень любят исследовать мир. Поэтому крупные конференции всегда проходят в исторических и культурных столицах мира. Эти города удобны для посещения людям со всего мира и интересны с туристической точки зрения. Но иногда желание исследовать новое и неизведанное берет верх, и городом проведения конференции становится, например, Анкоридж на Аляске. Тоже о нем не слышали до этого? А в этом году там проходила одна из крупнейших конференций KDD'19.

Трип на Аляску, или KDD'19 глазами очевидца - 1

Мы в компании Антиплагиат не могли пропустить такое событие и отправились навстречу приключениям на другой конец земного шара. Что было на KDD 2019 — читайте в нашем обзоре!

Читать полностью »

В первой публикации рассказывалось о том, что есть подзабытая теорема Эрдёша-Реньи, из которой следует, что в случайном ряде, длины N, с вероятностью близкой к 1 существует подряд из одинаковых значений длиной log_2{N}. Указанное свойство случайной величины можно использовать для ответа на вопрос: «После обработки больших данных, подчиняется ли остаточный ряд закону случайных чисел или нет?»

Ответ на такой вопрос определялся не на основании тестов соответствия нормальности распределения, а на основании свойств самого остаточного ряда.
Читать полностью »

Сообщество ML-REPA приглашает на открытый митап по вопросам воспроизводимости и управлению экспериментами в computer vision, который пройдет 15 августа в офисе Райффайзенбанк в Нагатино.

На митапе будем разбираться с особенностями обеспечения воспроизводимости экспериментов в Computer Vision, автоматизации пайплайнов и версионирование моделей. Где может пригодиться DVC или MLFlow? А где лучше написать свой “велосипед“? Также глубже посмотрим на реализацию Catalyst и его применение.

Data and Models Version control in Computer Vision meetup - 1
Читать полностью »

Тренировка по машинному обучению 10 августа - 1

Приглашаем 10 августа в московский офис Mail.ru Group на тренировку по машинному обучению.

Тренировка по машинному обучению — это открытый митап, на который мы приглашаем участников соревнований по анализу данных, чтобы познакомиться, рассказать про задачи, обменяться опытом участия и пообщаться. С докладами выступают опытные участники последних соревнований на Kaggle и других платформах, рассказывают о своих решениях: какие техники и методы использовали они сами, а какие помогли их конкурентам.
Читать полностью »

Как выдумаете, сложно ли написать на Python собственного чатбота, способного поддержать беседу? Оказалось, очень легко, если найти хороший набор данных. Причём это можно сделать даже без нейросетей, хотя немного математической магии всё-таки понадобится.

Идти будем маленькими шагами: сначала вспомним, как загружать данные в Python, затем научимся считать слова, постепенно подключим линейную алгебру и теорвер, и под конец сделаем из получившегося болтательного алгоритма бота для Телеграм.

Этот туториал подойдёт тем, кто уже немножко трогал пальцем Python, но не особо знаком с машинным обучением. Я намеренно не пользовался никакими nlp-шными библиотеками, чтобы показать, что нечто работающее можно собрать и на голом sklearn.

Создание простого разговорного чатбота в python - 1

Читать полностью »

Визуализация новостей рунета - 1

Представьте себе, что вы поспорили с друганом, что было раньше — курица или яйцо повышение какого-то налога, к примеру, или новости на эту тему, или вовсе важное событие заглушили тучей новостей про новую песню, скажем, Киркорова. Удобно было бы посчитать, сколько новостей на каждую тему было в каждый конкретный момент времени, а потом наглядно это представить. Собственно, этим и занимается проект “радар новостей рунета”. Под катом мы расскажем, при чём здесь машинное обучение и как любой доброволец может в этом поучаствовать.

Читать полностью »

Распознавание объектов в режиме реального времени на iOS с помощью YOLOv3 - 1

Всем привет!

В данной статье мы напишем небольшую программу для решения задачи детектирования и распознавания объектов (object detection) в режиме реального времени. Программа будет написана на языке программирования Swift под платформу iOS. Для детектирования объектов будем использовать свёрточную нейронную сеть с архитектурой под названием YOLOv3. В статье мы научимся работать в iOS с нейронными сетями с помощью фреймворка CoreML, немного разберемся, что из себя представляет сеть YOLOv3 и как использовать и обрабатывать выходы данной сети. Так же проверим работу программы и сравним несколько вариаций YOLOv3: YOLOv3-tiny и YOLOv3-416.

Исходники будут доступны в конце статьи, поэтому все желающие смогут протестировать работу нейронной сети у себя на устройстве.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js