Рубрика «machine learning» - 15

Современное машинное обучение позволяет делать невероятные вещи. Нейросети работают на пользу общества: находят преступников, распознают угрозы, помогают диагностировать болезни и принимать сложные решения. Алгоритмы могут переплюнуть человека и в творчестве: они рисуют картины, пишут песни и делают из обычных снимков шедевры. А те, кто разрабатывает эти алгоритмы, часто представляются карикатурным учеными.

Не все так страшно! Собрать нейронную сеть из базовых моделей может любой, кто сколько-то знаком с программированием. И даже не обязательно учить Python, всё можно сделать на родном JavaScript. Как легко начать и зачем машинное обучение фронтендерам, рассказал Алексей Охрименко (obenjiro) на FrontendConf, а мы переложили в текст — чтобы названия архитектур и полезные ссылки были под рукой.

Spoiler. Alert!

Этот рассказ:

  • Не для тех, кто «уже» работает с Machine Learning. Что-то интересное будет, но маловероятно, что под катом вас ждут открытия.
  • Не о Transfer Learning. Не будем говорить о том, как написать нейронную сеть на Python, а потом работать с ней из JavaScript. Никаких читов — будем писать глубокие нейронные сети именно на JS.
  • Не о всех деталях. Вообще все концепции в одну статью не поместятся, но необходимое, конечно, разберем.

Читать полностью »

Всем привет, сегодня хотим поговорить о запуске нового курса «Математика для Data Science», а точнее целой серии курсов, подробнее об этом в нашей публикации.

Математика для Data Science. Новый курс от OTUS - 1

Не все, учась в школе, понимают, как в жизни им пригодится математика. Самый распространенный ответ – считать деньги, но не все рождаются крутыми финансистами. Это понимают и учителя математики, поэтому часто преподают через пень-колоду. И вот человек школу закончил, зачем нужна математика, так и не понял, но деньги считать (и свои, и чужие) научился, посчитал и захотел работать в IT, например, в сфере машинного обучения, чтобы зарабатывать немало. Тут-то и стало ясно, для чего нужна математика! Но школа, как и институт, уже давно прошли...Читать полностью »

Я постараюсь рассказать вам насколько легко получить интересные результаты, просто применив совершенно стандартный подход из тьюториала курса по машинному обучению к не самым используемым в Deep Learning данным. Суть моего поста в том, это может каждый из нас, надо просто посмотреть на тот массив информации, который вы хорошо знаете. Для этого, фактически, гораздо важнее просто хорошо понимать свои данные, чем быть экспертом в новейших структурах нейросетей. То есть, на мой взгляд, мы находимся в той золотой точке развития DL, когда с одной стороны это уже инструмент, которым можно пользоваться без необходимости быть PhD, а с другой — еще полно областей, где его просто особо никто не применял, если посмотреть чуть дальше традиционных тем.

Как создать модель точнее transfermarkt и не предсказывать или что больше всего влияет на стоимость трансферов - 1

Читать полностью »

How we made landmark recognition in Cloud Mail.ru, and why - 1

With the advent of mobile phones with high-quality cameras, we started making more and more pictures and videos of bright and memorable moments in our lives. Many of us have photo archives that extend back over decades and comprise thousands of pictures which makes them increasingly difficult to navigate through. Just remember how long it took to find a picture of interest just a few years ago.

One of Mail.ru Cloud’s objectives is to provide the handiest means for accessing and searching your own photo and video archives. For this purpose, we at Mail.ru Computer Vision Team have created and implemented systems for smart image processing: search by object, by scene, by face, etc. Another spectacular technology is landmark recognition. Today, I am going to tell you how we made this a reality using Deep Learning.
Читать полностью »

Недавно мне на глаза попался датасет на Kaggle с данными о 45 тысячах фильмов с Full MovieLens Dataset. Данные содержали не только информацию об актерах, съемочной команде, сюжете и т.п., но и оценки, выставленные фильмам пользователями ресурса (26 миллионов оценок от 270 тыс.пользователей).

Стандартная задача для таких данных — это рекомендательная система. Но мне в голову почему-то пришло прогнозирование рейтинга фильма на основе информации, доступной до его выхода. Я не знаток кинематографа, и поэтому обычно ориентируюсь на рецензии, выбирая что посмотреть из новинок. Но ведь рецензенты тоже несколько biased — они-то смотрят гораздо больше разных фильмов, чем рядовой зритель. Поэтому спрогнозировать, как оценит фильм обычная публика, показалось занятным. Читать полностью »

Серия «Белый шум рисует черный квадрат»

История цикла этих публикаций начинается с того, что в книге Г.Секей «Парадоксы в теории вероятностей и математической статистике» (стр.43), было обнаружено следующее утверждение:

Треугольник Паскаля vs цепочек типа «000…-111…» в бинарных рядах и нейронных сетях - 1
Рис. 1.

По анализу комментарий к первым публикациям (часть 1, часть 2) и последующими рассуждениями созрела идея представить эту теорему в более наглядном виде.

Большинству из участников сообщества знаком треугольник Паскаля, как следствие биноминального распределения вероятностей и многие сопутствующие законы. Для понимания механизма образования треугольника Паскаля развернем его детальнее, с развертыванием потоков его образования. В треугольнике Паскаля узлы формируются по соотношению 0 и 1, рисунок ниже.

Треугольник Паскаля vs цепочек типа «000…-111…» в бинарных рядах и нейронных сетях - 2
Рис. 2.

Для понимания теоремы Эрдёша-Реньи составим аналогичную модель, но узлы будут формироваться из значений, в которых присутствуют наибольшие цепочки, состоящие последовательно из одинаковых значений. Кластеризации будет проводиться по следующему правилу: цепочки 01/10, к кластеру «1»; цепочки 00/11, к кластеру «2»; цепочки 000/111, к кластеру «3» и т.д. При этом разобьём пирамиду на две симметричные составляющие рисунок 3.

Треугольник Паскаля vs цепочек типа «000…-111…» в бинарных рядах и нейронных сетях - 3
Рис. 3.

Первое что бросается в глаза это то, что все перемещения происходят из более низкого кластера в более высокий и наоборот быть не может. Это естественно, так как если цепочка размера j сложилась, то она уже не может исчезнуть.
Читать полностью »

image
Источник: xkcd

Линейная регрессия является одним из базовых алгоритмов для многих областей, связанных с анализом данных. Причина этому очевидна. Это очень простой и понятный алгоритм, что способствует его широкому применению уже многие десятки, если не сотни, лет. Идея заключается в том, что мы предполагаем линейную зависимость одной переменной от набора других переменных, а потом пытаемся эту зависимость восстановить.

Но в этой статье речь пойдет не про применение линейной регрессии для решения практических задач. Здесь будут рассмотрены интересные особенности реализации распределенных алгоритмов её восстановления, с которыми мы столкнулись при написании модуля машинного обучения в Apache Ignite. Немного базовой математики, основ машинного обучения и распределенных вычислений помогут разобраться, как восстанавливать линейную регрессию, даже если данные распределены между тысячами узлов.
Читать полностью »

Однажды, исследуя глубины интернета, я наткнулся на видео, где человек обучает змейку с помощью генетического алгоритма. И мне захотелось так же. Но просто взять все то же самое и написать на python было бы не интересно. И я решил использовать более современный подход для обучения агентных систем, а именно Q-network. Но начнем с начала.

Обучение с подкреплением

В машинном обучении RL(Reinforcement Learning) достаточно сильно отличается от других направлений. Отличие состоит в том, что классический ML алгоритм обучается уже на готовых данных, в то время как RL, так сказать, сам создает себе эти данные. Идея RL состоит в том, что помимо самого алгоритма, который называют агентом, существует среда(environment), в которую этот агент и помещается. На каждом этапе агент должен совершать какое-то действие(action), а среда отвечает на это наградой(reward) и своим состоянием(state), на основе которого агент и совершает действие.

DQN

Здесь должно быть объяснение того, как алгоритм работает, но я оставлю ссылку на то, где это объясняют умные люди.

Читать полностью »

Всем привет. Считанные дни остаются до старта курса «Machine Learning». В преддверии начала занятий мы подготовили полезный перевод, который будет интересен как нашим студентам, так и всем читателям блога. И сегодня делимся с вами завершающей частью данного перевода.

Интерпретируемая модель машинного обучения. Часть 2 - 1


Partial Dependence Plots

Partial Dependence Plots (графики частичной зависимости или же PDP, PD-графики) показывают незначительное влияние одного или двух признаков на прогнозируемый результат модели машинного обучения ( J. H. Friedman 2001 ). PDP может показать связь между целью и выбранными признаками с помощью 1D или 2D графиков.Читать полностью »

Компьютерное зрение видит эмоции, пульс, дыхание и ложь — но как построить на этом стартап. Разговор с Neurodata Lab - 1

Наши отношения с компьютерным зрением не были такими шумными, пока оно не научилось творить чудеса с человеческими лицами. Алгоритмы подменяют людей на фото и видео, меняют возраст, расу и пол. Это и главное интернет-развлечение последних лет, и источник тревог. Сегодня приложения штурмуют чарты, завтра протестующие пилят столбы с камерами, распознающими лица. И, кажется, мы только в самом начале пути. Того, что компьютер может считать с нашего лица, будет все больше и больше.

В начале месяца мы посетили офис Neurodata Lab. Основное направление для компании — распознавание человеческих эмоций. Мы постарались выяснить как это делается и зачем нужно.

Neurodata Lab получила на «Моём круге» среднюю оценку 4,6 и среднюю рекомендацию 95% от своих сотрудников, которые выше всего оценили такие критерии, как профессиональный рост, интересные задачи, хорошие отношения с коллегами и то, что компания делает мир лучше.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js