Аналитический центр red_mad_robot продолжает следить за архитектурными прорывами в мире AI. В этот раз — экспериментальная модель от команды Sakana AIЧитать полностью »
Аналитический центр red_mad_robot продолжает следить за архитектурными прорывами в мире AI. В этот раз — экспериментальная модель от команды Sakana AIЧитать полностью »
Настоящее исследование посвящено комплексному анализу глобальных климатических изменений на основе исторических метеорологических данных за период с 1950 по 2024 год. Мы фокусируемся на шести ключевых странах, представляющих основные климатические зоны планеты.
Основные задачи исследования можно сформулировать следующим образом:
Сбор и предварительная обработка данных
Анализ климатических изменений
Прогнозирование климатических параметров
Визуализация результатов
С прошлой статьи я внёс несколько изменений:
1. Планировщик был сломан и не изменял скорость. Починил.
2. Остаточное соединение через умножение.
3. WindowedDense для выходной проекции.
4. Добавил clipnorm 1, cutoff_rate 0.4
Как обычно это всё добавляет стабильности и 1% точности.
WindowedDense по неизвестной мне причине добавляет SMR стабильность.
class SMR(layers.Layer):
def __init__(self, units):
super().__init__()
self.state_size = units
self.s_l = layers.Dense(units, use_bias=False)
def get_in_proj(self):
return WindowedDense(self.state_size, 16)
def call(self, i, states):
s = states[0]
s = self.s_l(s)
o = i * (s + 0.1)
return o, [o]
Рекуррентные нейронные сети (RNN), а также ее наследники такие, как LSTM и GRU, когда-то были основными инструментами для работы с последовательными данными. Однако в последние годы они были почти полностью вытеснены трансформерами (восхождение Attention is all you need), которые стали доминировать в областях от обработки естественного языка до компьютерного зрения. В статье "Were RNNs All We NeededЧитать полностью »
Привет!
Два последних года я в рамках магистерской диссертации разбирался с тем, как лучше использовать рекуррентные нейронные сети для прогнозирования временных рядов, и теперь хочу поделиться моим опытом с сообществом.
Я разделил свой рассказ на несколько блоков:
Что такое RNN
Рекуррентные нейроны
Методы обработки временных рядов
Стратегии прогнозирования
Добавление факторов в RNN
Глобальные модели RNN
Продолжение цикла публикаций статей про прогнозирование временных рядов. На повестке – перевод статьи How to Develop Multi-Step LSTM Time Series Forecasting Models for Power Usage.
Читать полностью »
Перевод руководства по рекуррентным нейросетям с сайта Tensorflow.org. В материале рассматриваются как встроенные возможности Keras/Tensorflow 2.0 по быстрому построению сеток, так и возможности кастомизации слоев и ячеек. Также рассматриваются случаи и ограничения использования ядра CuDNN позволяющего ускорить процесс обучения нейросети.

Промышленная разработка программных систем требует большого внимания к отказоустойчивости конечного продукта, а также быстрого реагирования на отказы и сбои, если они все-таки случаются. Мониторинг, конечно же, помогает реагировать на отказы и сбои эффективнее и быстрее, но недостаточно. Во-первых, очень сложно уследить за большим количеством серверов – необходимо большое количество людей. Во-вторых, нужно хорошо понимать, как устроено приложение, чтобы прогнозировать его состояние. Следовательно, нужно много людей, хорошо понимающих разрабатываемые нами системы, их показатели и особенности. Предположим, даже если найти достаточное количество людей, желающих заниматься этим, требуется ещё немало времени, чтобы их обучить.
Что же делать? Здесь нам на помощь спешит искусственный интеллект. Речь в статье пойдет о предиктивном обслуживании (predictive maintenance). Этот подход активно набирает популярность. Написано большое количество статей, в том числе и на Хабре. Крупные компании вовсю используют такой подход для поддержки работоспособности своих серверов. Изучив большое количество статьей, мы решили попробовать применить этот подход. Что из этого вышло?