Рубрика «logistic regression»

Привет! Меня зовут Саша и я backend разработчик. В свободное от работы время я изучаю ML и развлекаюсь с данными hh.ru.

Эта статья о том, как мы с помощью машинного обучения автоматизировали рутинный процесс назначения задач на тестировщиков.

В hh.ru есть внутренняя служба, на которую в Jira создаются задачи (внутри компании их называют HHS), если у кого-то что-то не работает или работает неправильно. Дальше эти задачи вручную обрабатывает руководитель группы QA Алексей и назначает на команду, в чью зону ответственности входит неисправность. Лёша знает, что скучные задачи должны выполнять роботы. Поэтому он обратился ко мне за помощью по части ML.
Автоматическое назначение задач в Jira с помощью ML - 1
Читать полностью »

Открытый курс машинного обучения. Тема 4. Линейные модели классификации и регрессии - 1

Всем привет!

Сегодня мы детально обсудим очень важный класс моделей машинного обучения – линейных.
Ключевое отличие нашей подачи материала от аналогичного в курсах эконометрики и статистики – это акцент на практическом применении линейных моделей в реальных задачах (хотя и математики тоже будет немало).

Пример двух таких задач – это соревнования Kaggle Inclass по прогнозированию популярности статьи на Хабре и по идентификации взломщика в Интернете по его последовательности переходов по сайтам. Домашним заданием №4 будет применение линейных моделей в этих задачах.

А пока еще можно сделать простое 3 задание – до 23:59 20 марта.
Все материалы доступны на GitHub.

Читать полностью »

После непродолжительной, но весьма кровавой войны мне все-таки удалось откомпилировать и собрать TensorFlow для GPU с CUDA capability=3.0. Теперь можно погрузиться в него основательно, потому что машинное обучение с GPU — это быстро, легко и приятно, а без GPU — порой лишь огромная потеря времени.

Попробуем запрограммировать самую простейшую логистическую регрессию.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js