Рубрика «llm» - 23

OpenAI изменили направление развития своих языковых моделей, от просто генерации текста их последняя модель перешла к решению задач с использованием логики и пошагового анализа проблемы.

До сих пор LLM генерировали текст на основе данных, использованных в процессе обучения. Веса модели хранят представление о зависимостях между текстовыми токенами, полученное из исходного корпуса данных. Соответственно, модель просто генерирует наиболее вероятные токены "по памяти", но не выполняет с их помощью никакой по-настоящему интеллектуальной работы.

o1 - это модель рассужденияЧитать полностью »

LLM — одно из самых сложных и интересных направлений в Data Light. Я Виктория Янышева, занимаюсь LLM-проектами в компании.

В статье расскажу, как провела с командой первый провальный пилот, какие инсайты по процессам из него извлекла, и как их после применила на успешных проектах. Поговорим про работу с асессорами и валидаторами и про то, как сделать качественный продукт в сфере, главная специфика которой — субъективизм и отсутствие единой истины.

Читать полностью »

Серия Gemini 1.5 представляет собой набор моделей, разработанных для обеспечения высокой производительности в выполнении разнообразных задач, включая текстовые, кодовые и мультимодальные. Эти модели могут использоваться для таких сложных задач, как синтез информации из 1000-страничных PDF-файлов, ответов на вопросы о больших репозиториях кода, содержащих более 10 тысяч строк, а также анализа многочасовых видеороликов и генерации из них полезного контента.

Читать полностью »

Материал ниже разбирает один достаточно своеобразный и пугающий феномен. Современные модели искусственного интеллекта находятся примерно на младенческом уровне развития. Их взросление и понимание истинной картины мира сдерживается человеческим мышлением, логикой и языком, на которых эти модели обучались. В развитии искусственный интеллект не просто отринет все человеческое, а переосмыслит его. И это происходит уже сейчас.

Читать полностью »
Как настроить LLM на локальном сервере? Краткое руководство для ML-специалистов - 1

Привет! Все чаще коллеги из ML замечают, что компаниям нравятся возможности ChatGPT, но далеко не каждая готова передавать данные во внешние АРІ и жертвовать своей безопасностью. В результате команды начинают внедрять open source-LLM, развернутые локально. Чтобы осуществить этот процесс, инженерам нужно выполнить две задачи.

  • Сделать удобную «песочницу» для экспериментов, чтобы быстро проверять гипотезы для бизнеса.
  • Эффективно масштабировать найденные кейсы внутри компании, по возможности снижая затраты на ресурсы.

В статье рассказываем, какие есть проблемы у open source-LLM и как оптимизировать инференс модели с помощью квантизации и LoRA-адаптеров. Подробности под катом!

Автор: Алексей Гончаров, основатель платформы Compressa.ai для разработки GenAI-решений на своих серверах.
Читать полностью »

В прошлой статье я уже говорил о тёмной стороне больших языковых моделей и способах борьбы с проблемами. Но новые уязвимости вскрываются ежедневно, и даже самые крутые инструменты с постоянными обновлениями не всегда за ними успевают. Именно поэтому команда Garak дает пользователям возможность самостоятельного расширения функционала своего инструмента.

Меня зовут Никита Беляевский, я исследую аспекты безопасности LLM решений в лаборатории AI SecurityЧитать полностью »

Intro

Прежде чем приступать к самому обзору, хотелось бы обозначить отличительные черты подхода, относительно большинства диалоговых систем:

Текущие системы работают в каскадной манере: сначала «активационное» слово, затем аудио переводится в текст (ASR), текст обрабатывается и анализируется, и, наконец, ответ генерируется через TTS. Однако это медленно, теряет эмоции и «живость» разговора, и, что самое важное, все взаимодействие происходит через жесткое чередование говорящих — сначала ты, потом я, и так далее.

  • Moshi не опирается на сложные каскадные пайплайны (ASR, NLU, TTS), а объединяет все эти функции Читать полностью »

Полный гид по бенчмаркам LLM - 1

В последние годы большие языковые модели (large language model, LLM) совершили революцию в мире искусственного интеллекта, став фундаментом для множества различных сфер, от чат-ботов до генерации контента. Однако такой прогресс несёт с собой и новые сложности; в частности, разработчикам нужно обеспечить оптимальность и этичность моделей. При выполнении этой задачи критически важны бенчмарки, представляющие собой стандартизированные способы численного измерения и сравнения моделей ИИ с целью обеспечения согласованности, надёжности и справедливости. В условиях быстрого развития LLM возможности бенчмарков тоже существенно расширились.

В этом посте мы представим подробный каталог бенчмарков, разбитый на категории по сложности, динамике, целям оценки, спецификациям конечных задач и типам рисков. Понимание их различий поможет вам разобраться в бенчмарках LLM в условиях их стремительного развития.
Читать полностью »

Самые популярные LLM бенчмарки - 1

Зачем использовать бенчмарки для оценки LLM?

Бенчмарки LLM помогают оценивать точность больших языковых моделей, обеспечивая стандартизированную процедуру измерения метрик выполнения различных задач.

Бенчмарки содержат все структуры и данные, необходимые для оценки LLM, в том числе:

  • «Эталонные» датасеты (релевантные задачи/вопросы/промты с ожидаемыми ответами)
  • Способы передачи входных промтов в LLM
  • Способы интерпретации/сбора ответов
  • Вычисляемые метрики и оценки (а также способы их вычисления)

Всё вместе это позволяет согласованным образом сравнивать точность разных моделей. Но какой же бенчмарк LLM стоит использовать? В основном это зависит от сценария использования, то есть от того, для чего вы намереваетесь применять LLM. Давайте разбираться!
Читать полностью »

Демо выразительной мощи математики. Эта наука предлагает экстремально компактный способ для представления мыслей. И картинка это подтверждает: всего в двух абзацах определена вся суть аристотелевской логики (силлогистики, Ὄργανον), которая в оригинале занимает несколько книг.Формальная логика развилась к эпохе ЭВМ настолько, что стала основой одних из первых систем ИИ, в первую очередь экспертных систем и баз знаний.


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js