Рубрика «линейная регрессия»

Привет! На связи команда ad-hoc аналитики X5 Tech.

Основная задача аналитика при проведении А/Б тестирования - оценка эффекта воздействия (тритмента). Примеров задач по оценке эффекта воздействия множество:

  1. Как изменится выручка от продаж, если изменить ассортимент товаров, предлагаемых в пространстве около кассы?

  2. Удастся ли улучшить самочувствие пациентов, если они начнут принимать новый препарат?

  3. Что произойдёт с оценками школьников, если они начнут посещать репетиторов?

Читать полностью »

В этой статье я рассказываю про линейную регрессию, свойства, которыми должны обладать данные для модели, процесс обучения, регуляризацию, метрики качества. Кроме чистой теории я показываю как это все реализовать. Я рассказываю все в своем стиле и понимании - с инженерной точки зрения, с точки зрения того, как реализовывать с нуля.

Введение

Линейная регрессия (ЛинР)Читать полностью »

Перевозка грузов является одной из важных сфер бизнеса, особенно в странах, имеющих большое транзитное значение, таких как Казахстан. При этом тарифы на перевозку, хоть и играют решающую роль при оценке доходности логистического бизнеса, весьма непрозрачны и зависят от большого количества факторов. В этих условиях кажется логичным построение модели, позволяющей с хорошим приближением предсказывать стоимость перевозки груза в зависимости от его параметров, условий перевозки, а также начального и конечного пунктов. В данном посте будут описаны основные этапы построения такой модели.

Этапы построения модели

Читать полностью »

Как пакет с пакетами помог аналитику решить задачу для бизнеса, или keep calm and import statsmodels - 1

Всем привет!
Читать полностью »

Всем привет! A/B тестирование уже давно стало стандартом в проверке гипотез и улучшении продуктов в X5. Но, как ни странно, многие из «модных» техник, которые применяются в A/B тестировании, на самом деле, не что иное, как вариации старой доброй линейной регрессии. 

Например, использование таких методов, как t-тест, стратификация, CUPED, CUMPED, по сути, сводятся к построению линейной регрессии и проверке гипотезы в рамках построенной модели. Наши коллеги из команды ad-hoc аналитики Х5 Tech уже писали про стратификацию здесь и про CUPED здесьЧитать полностью »

Хочу с вами зачелленджить одну интересную штуку: попробовать обучить нейросеть в Google Таблицах. Безо всяких макросов и прочих хаков, на чистых формулах.

Учим нейросети в Google Таблицах - 1

Читать полностью »

Успех в проектах по машинному обучению обычно связан не только с умением применять разные библиотеки, но и с пониманием той области, откуда взяты данные. Отличной иллюстрацией этого тезиса стало решение, предложенное командой Алексея Каюченко, Сергея Белова, Александра Дроботова и Алексея Смирнова в конкурсе PIK Digital Day. Они заняли второе место, а спустя пару недель рассказали о своём участии и построенных моделях на очередной ML-тренировке Яндекса.

Алексей Каюченко:
— Добрый день! Мы расскажем о соревновании PIK Digital Day, в котором мы участвовали. Немного о команде. Нас было четыре человека. Все с абсолютно разным бэкграундом, из разных областей. На самом деле, мы на финале познакомились. Команда сформировалась буквально за день до финала. Я расскажу про ход конкурса, организацию работы. Потом выйдет Сережа, он расскажет про данные, а Саша расскажет уже про сабмишен, про финальный ход работы и про то, как мы двигались по лидерборду.

Читать полностью »

Многомерная линейная регрессия — один из основополагающих методов машинного обучения. Несмотря на то, что современный мир интеллектуального анализа данных захвачен нейронными сетями и градиентным бустингом, линейные модели до сих пор занимают в нём своё почётное место.

В предыдущих публикациях на эту тему мы познакомились с тем, как получать точные оценки средних и ковариаций методом Уэлфорда, а затем научились применять эти оценки для решения задачи одномерной линейной регрессии. Конечно, эти же методы можно использовать и в задаче многомерной линейной регрессии.

Метод Уэлфорда и многомерная линейная регрессия - 1

Читать полностью »

Доброго времени суток! Пора вновь вернуться к задачам оптимизации. На этот раз мы займемся линейной регрессией и разберемся, кто же такие коты — только пушистые домашние мерзавцы животные или еще и неплохой инструмент для решения прикладных задач.

Умеют ли коты строить регрессию? - 1

Читать полностью »

Всем привет. Это моя первая статья на Хабре, буду рад критике и комментариям.

Статья посвящена простому, но удобному способу построения предикторов особого вида в SQL-подобных языках. Эти предикторы описывают линейный тренд в данных, который можно использовать для решения задач машинного обучения. Идея заключается в том, чтобы по транзакционным данным быстро и эффективно рассчитывать линейные тренды.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js