Всем привет! Меня зовут Роман Соломатин, я представляю команду AI-Run из X5 Tech, мы занимаемся генеративными сетями в целом и языковыми моделями в частности. Несколько месяцев назад русскоязычное сообщество разработчиков искусственного интеллекта получило инструмент для оценки моделей — бенчмарк ruMTEB (Massive Text Embedding Benchmark). Он предназначен для оценки репрезентации русскоязычных текстов и позволяет объективно сравнивать различные эмбеддинговые модели, которые превращают текст в вектора чисел, ориентированные на работу с русским языком (Читать полностью »
Рубрика «лидерборд»
Насколько естественен естественный язык? Представляем датасет RuCoLA
2022-05-24 в 9:02, admin, рубрики: github, natural language processing, open source, Исследования и прогнозы в IT, корпус текстов, лидерборд, лингвистика, машинное обучение, открытые данныеВ последние годы в области NLP произошла настоящая революция: огромные нейросети, предобученные на сотнях гигабайт текстов, бьют все известные рекорды качества. Но обладают ли такие нейросети чутьём на «естественность» текста, которое есть у носителей языка? Оценка предложения по внутреннему чутью в лингвистике получила название приемлемости; умение давать подобную оценку — ещё один шаг на пути к общему пониманию языка. Чтобы узнать, насколько хорошо нейросети для русского языка справляются с этой задачей, мы публикуем RuCoLA (Russian Corpus of Linguistic Acceptability) — датасет русскоязычных предложений, размеченных по бинарной шкале приемлемости. Это совместный труд команды исследователей и NLP-разработчиков из SberDevices, ABBYY, Yandex Research, Huawei Noah’s Ark Lab и Факультета компьютерных наук ВШЭ. Также мы открываем лидерборд на данных RuCoLA, чтобы любой желающий мог проверить способности своих моделей или поучаствовать в развитии методов для оценки приемлемости.
Читать полностью »
Люди ломаются на логике, роботы — на всем понемногу. Экзамены по русскому для NLP-моделей
2020-06-10 в 9:00, admin, рубрики: BERT, deep learning, natural language processing, nlp, transfer learning, Алгоритмы, Блог компании Сбербанк, искусственный интеллект, лидерборд, машинное обучение, нейронные сети, обработка текстов, русский язык, Семантика, славянская группа языков, управление проектами, языкиЧтобы машины могли обрабатывать текст на русском и «понимать» его, в NLP используются универсальные языковые модели и трансформеры — BERT, RoBERTa, XLNet и другие — архитектуры от 100 миллионов параметров, обученные на миллиардах слов. Все оригинальные модели появляются обычно для английского, показывают state-of-the-art в какой-нибудь прикладной задаче и только спустя полгода-год появляются и для русского языка, без тюнинга архитектуры.
Чтобы корректнее обучать свою модель для русского или другого языка и адаптировать её, хорошо бы иметь какие-то объективные метрики. Их существует не так много, а для нашей локали и вовсе не было. Но мы их сделали, чтобы продолжить развитие русских моделей для общей задачи General Language Understanding.
Мы — это команда AGI NLP Сбербанка, лаборатория Noah’s Ark Huawei и факультет компьютерных наук ВШЭ. Проект Russian SuperGLUE — это набор тестов на «понимание» текста и постоянный лидерборд трансформеров для русского языка.
Читать полностью »