Рубрика «лекции техносферы»

Лекции Техносферы. Нейронные сети в машинном обучении - 1

Представляем вашему вниманию очередную порцию лекций Техносферы. На курсе изучается использование нейросетевых алгоритмов в различных отраслях, а также отрабатываются все изученные методы на практических задачах. Вы познакомитесь как с классическими, так и с недавно предложенными, но уже зарекомендовавшими себя нейросетевыми алгоритмами. Так как курс ориентирован на практику, вы получите опыт реализации классификаторов изображений, системы переноса стиля и генерации изображений при помощи GAN. Вы научитесь реализовать нейронные сети как с нуля, так и на основе библиотеке PyTorch. Узнаете, как сделать своего чат-бота, как обучать нейросеть играть в компьютерную игру и генерировать человеческие лица. Вы также получите опыт чтения научных статей и самостоятельного проведения научного исследования.

Читать полностью »

Современная поисковая система, качество работы которой воспринимается как данность, является сложнейшим программно-аппаратным комплексом, создателям которого пришлось решить огромное количество практических проблем, начиная от большого объема обрабатываемых данных и заканчивая нюансами восприятия человеком поисковой выдачи. На курсе второго семестра Техносферы «Современные методы и средства построения систем информационного поиска» мы рассказываем об основных методах, применяемых при создании поисковых систем. Некоторые из них — хороший пример смекалки, некоторые показывают, где и как может применяться современный математический аппарат.

Авторы курса — создатели поисковой системы на портале Mail.Ru — делятся собственным опытом разработки систем искусственного интеллекта. В курсе рассказывается, насколько интересно и увлекательно делать поисковую систему, решать задачи обработки текстов на естественном языке, а также какие используются методы и средства решения таких задач.

Лекция 1. «Введение в информационный поиск»

Алексей Воропаев, руководитель группы рекомендаций Поиска Mail.Ru, дает определение понятия информационного поиска и делает обзор существующих поисковых систем, рассказывает об индексации и поисковых кластерах.
Читать полностью »

Слушайте и смотрите новую подборку лекций Техносферы Mail.Ru. На этот раз представляем в открытом доступе весенний курс «Введение в анализ данных», на котором слушателей знакомят со сферой анализа данных, основными инструментами, задачами и методами, с которыми сталкивается любой исследователь данных в работе. Курс преподают Евгений Завьялов (аналитик проекта Поиск Mail.Ru, занимающийся извлечением знаний, полезных бизнесу из данных, генерируемых поисковым движком и десктопными приложениями), Михаил Гришин (программист-исследователь из отдела анализа данных) и Сергей Рыбалкин (старший программист из студии Allods Team).

Лекция 1. Введение в Python

Из первой лекции вы узнаете, что такое анализ данных, какие инструменты используют для анализа данных, а также как работает Python.

Читать полностью »

Сегодня мы предлагаем вашему вниманию очередную публикацию в рамках постоянной рубрики «Лекции Техносферы». В этот раз вы можете изучить материалы по курсу «Методы использования СУБД в интернет-приложениях». Цель курса — изучение топологии, многообразия и основных принципов функционирования систем хранения данных, а также алгоритмов, заложенных в основу как централизованных, так и распределённых систем, демонстрация фундаментальных компромиссов присущих тем или иным решениям. Преподаватели курса: Константин Осипов kostja, Евгений Блих bigbes, Роман Цисык.
Читать полностью »

Продолжаем публиковать материалы наших образовательных проектов. В этот раз предлагаем ознакомиться с лекциями Техносферы по курсу «Алгоритмы интеллектуальной обработки больших объемов данных». Цель курса — изучение студентами как классических, так и современных подходов к решению задач Data Mining, основанных на алгоритмах машинного обучения. Преподаватели курса: Николай Анохин (anokhinn), Владимир Гулин и Павел Нестеров (mephistopheies).

Объемы данных, ежедневно генерируемые сервисами крупной интернет-компании, поистине огромны. Цель динамично развивающейся в последние годы дисциплины Data Mining состоит в разработке подходов, позволяющих эффективно обрабатывать такие данные для извлечения полезной для бизнеса информации. Эта информация может быть использована при создании рекомендательных и поисковых систем, оптимизации рекламных сервисов или при принятии ключевых бизнес-решений.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js