Рубрика «лейбниц»

Было у отца два сына. И оставил он им наследство — камень драгоценный. А чтобы никого не обидеть, поставил он перед сыновьями условие: нельзя тот камень ни пилить, ни продавать. Можно только по очереди владеть им. И повелось так — каждый год камень переходил от одного брата к другому. Потом камнем по очереди владели их потомки, потом потомки их потомков… И длилось так вечно.

Читать полностью »

Математические обозначения: Прошлое и будущее - 1

Перевод поста Стивена Вольфрама (Stephen Wolfram) "Mathematical Notation: Past and Future (2000)".
Выражаю огромную благодарность Кириллу Гузенко KirillGuzenko за помощь в переводе и подготовке публикации


Содержание

Резюме
Введение
История
Компьютеры
Будущее
Примечания
Эмпирические законы для математических обозначений
Печатные обозначения против экранных
Письменные обозначения
Шрифты и символы
Поиск математических формул
Невизуальные обозначения
Доказательства
Отбор символов
Частотное распределение символов
Части речи в математической нотации


Стенограмма речи, представленной на секции «MathML и математика в сети» первой Международной Конференции MathML в 2000-м году.


Резюме

Большинство математических обозначений существуют уже более пятисот лет. Я рассмотрю, как они разрабатывались, что было в античные и средневековые времена, какие обозначения вводили Лейбниц, Эйлер, Пеано и другие, как они получили распространение в 19 и 20 веках. Будет рассмотрен вопрос о схожести математических обозначений с тем, что объединяет обычные человеческие языки. Я расскажу об основных принципах, которые были обнаружены для обычных человеческих языков, какие из них применяются в математических обозначениях и какие нет.

Согласно историческим тенденциям, математическая нотация, как и естественный язык, могла бы оказаться невероятно сложной для понимания компьютером. Но за последние пять лет мы внедрили в Mathematica возможности к пониманию чего-то очень близкого к стандартной математической нотации. Я расскажу о ключевых идеях, которые сделали это возможным, а также о тех особенностях в математических обозначениях, которые мы попутно обнаружили.

Большие математические выражения — в отличии от фрагментов обычного текста — часто представляют собой результаты вычислений и создаются автоматически. Я расскажу об обработке подобных выражений и о том, что мы предприняли для того, чтобы сделать их более понятными для людей.

Традиционная математическая нотация представляет математические объекты, а не математические процессы. Я расскажу о попытках разработать нотацию для алгоритмов, об опыте реализации этого в APL, Mathematica, в программах для автоматических доказательств и других системах.

Обычный язык состоит их строк текста; математическая нотация часто также содержит двумерные структуры. Будет обсуждён вопрос о применении в математической нотации более общих структур и как они соотносятся с пределом познавательных возможностей людей.

Сфера приложения конкретного естественного языка обычно ограничивает сферу мышления тех, кто его использует. Я рассмотрю то, как традиционная математическая нотация ограничивает возможности математики, а также то, на что могут быть похожи обобщения математики.
Читать полностью »

Детальный взгляд на наследие Лейбница - 1

Перевод статьи Стивена Вольфрама (Stephen Wolfram) "Dropping In on Gottfried Leibniz".

На протяжении многих лет меня интересовала личность Готфрида Лейбница, в частности из-за того, что он хотел создать что то на подобие Mathematica, Wolfram|Alpha и возможно даже A New Kind of Science но на три столетия раньше. Поэтому когда в недавнем прошлом я посетил Германию, то мне страстно захотелось побывать в его архивах в Ганновере.

Листая пожелтевшие от времени, но все еще прочные листы с его записями я чувствовал некоторую взаимосвязь — я пытался представить, о чем он думал когда писал их. Также я старался сопоставить содержимое записей с тем, что мы знаем сейчас — три столетия спустя.

post_55_1.gif
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js