Рубрика «lazy evaluation»

Наступила осень, и, несмотря на хорошую погоду, наши зрители потянулись за новым видеоконтентом. Бекенд-серверы, обслуживающие эмбеды с видео, стали упираться в CPU. С криками "а-а-а" прибежали системные администраторы и начали отбирать у отдела разработки ноутбуки и десктопы, грозясь поставить их в датацентры "на усиление". Разработке это конечно всё не понравилось и все поувольнялись с этой хренью решили что-нибудь сделать.

Читать полностью »

Дмитрий Карловский из SAPRUN представляет… ммм...

Это — текстовая версия одноимённого выступления на FrontendConf'17. Вы можете читать её как статью, либо открыть в интерфейсе проведения презентаций.

Надоело.. Чем поможет ОРП?
… писать много, а делать мало? Пиши мало, делай много!
… часами дебажить простую логику? Реактивные правила обеспечат консистентность!
… асинхронщина? Синхронный код тоже может быть неблокирующим!
… что всё по умолчанию тупит? ОРП оптимизирует потоки данных автоматом!
… функциональные головоломки? Объекты со свойствами — проще некуда!
… что приложение падает целиком? Позволь упасть его части — само поднимется!
… жонглировать индикаторами ожидания? Индикаторы ожидания пусть сами появляются, где надо!
… двустороннее связывание? Двустороннее связывание нужно правильно готовить!
… пилить переиспользуемые компоненты? Пусть компоненты будут переиспользуемыми по умолчанию!
… вечно догонять? Вырывайся вперёд и лидируй!

Читать полностью »

Я разрабатываю бесплатную библиотеку StreamEx, которая расширяет стандартное Java 8 Stream API, добавляя туда новые операции, коллекторы и источники стримов. Обычно я не добавляю всё подряд, а всесторонне рассматриваю каждую потенциальную фичу. Например, при добавлении новой промежуточной (intermediate) операции встают такие вопросы:

  1. Будет ли она действительно промежуточной, то есть не будет трогать источник до выполнения терминальной операции?
  2. Будет ли она ленивой и вытаскивать из источника не больше данных, чем требуется?
  3. Сработает ли она на бесконечном стриме? Требует ли она ограниченный объём памяти?
  4. Будет ли она хорошо параллелиться?

Минусик по любому из этих пунктов заставляет серьёзно задуматься, добавлять ли такую операцию. Минусик по первому — это сразу нет. Например, у конкурентов в jOOλ есть операция shuffle(), которая выглядит как промежуточная, но на самом деле прямо сразу потребляет весь стрим в список, перемешивает его и создаёт новый стрим. Я такое не уважаю.

Минусики по остальными пунктам не означают сразу нет, потому что есть и стандартные операции, которые их нарушают. Второй пункт нарушает flatMap(), третий — sorted(), четвёртый — всякие limit() и takeWhile() (в JDK-9). Но всё-таки я стараюсь этого избегать. Однако на днях я открыл для себя операцию, которая плохо параллелится и в зависимости от использования может не сработать на бесконечном стриме, но всё же слишком хороша. Через неё удаётся буквально в несколько строчек выразить как практически любую существующую промежуточную операцию, так и кучу несуществующих. Я назвал операцию headTail().
Читать полностью »

Маленькая Лямбда решила, что уборку в комнате можно отложить и на потом.

Ленивые вычисления — часто используемая методика при исполнении компьютером программ на Haskell. Они делают наш код проще и модульнее, но могут вызвать и замешательство, особенно когда речь заходит об использовании памяти, становясь для новичков распространённой ловушкой. Например, безобидно выглядящее выражение

foldl (+) 0 [1..10^8]

потребует для своего вычисления гигабайты памяти.

В этом руководстве я хочу объяснить, как работают ленивые вычисления и что они означают для времени выполнения и объёма памяти, затрачиваемыми программами на Haskell. Я начну рассказ с основ редукции графов, а после перейду к обсуждению строгой левой свёртки — простейшего примера для понимания и ликвидации утечек памяти.

Тема ленивых вычислений рассматривалась во многих учебниках (например, в книге Саймона Томпсона «Haskell — The Craft of Functional Programming»), но информацию о них, кажется, всё ещё проблематично найти в сети. Надеюсь, моё руководство посодействует решению этой проблемы.

Ленивые вычисления — это компромисс. С одной стороны, они помогают нам сделать код более модульным. С другой стороны, бывает невозможно до конца разобраться, как происходит вычисление в конкретной программе — всегда существуют небольшие отличия между реальностью и тем, что вы о ней думаете. В конце статьи я дам рекомендации, как поступать в ситуациях такого рода. Итак, приступим!

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js