Рубрика «Лагранж»

Введение

Карл Давид Тольме Рунге (30 августа 1856 - 3 января 1927) - выдающийся немецкий математик, физик и спектроскопист. Обучался в Берлинском университете, где получил степень PhD, являлся профессором математики в Ганноверском университете, а также главой кафедры прикладной математики в Гёттингене. [1]

в 1901 году Карл открыл "Феномен Рунге" - в численном анализе эффект нежелательных колебаний, возникающий при интерполяции полиномами высоких степеней - о котором пойдёт речь в данной статье. [2]

Но прежде, чем мы окунёмся глубже в изучение данного феномена, давайте поговорим об Читать полностью »

******************* Ну и кто из нас читал «Начала» Ньютона? *****************

Беру в руки журнал “Наука и жизнь” №1 2020. На обложке бросается в глаза вопрос “Почему Эйнштейн самый великий физик?”. Действительно, почему? Открываю статью Евгения Берковича “Трагедия Эйнштейна, или счастливый Сизиф”. Начинается она так: “Кто самый великий физик? Спросите об этом кого угодно, любой вам скажет: Альберт Эйнштейн. Не зря строгий академик Лев Ландау поставил его первым в иерархии физиков”.

Но, господин Беркович, ведь Ландау классифицировал, как мне кажется, только действующих на тот момент физиков. По крайней мере, где бы шкала Ландау не упоминалась, Ньютон там не упоминался. При всей «скромности» Ландау я не могу вообразить, что где-то есть список, составленный им и в котором был бы и Ньютон и сам Ландау.

“Спросите об этом кого угодно…”. Господин Беркович берет на себя смелость отвечать за всех. Ну, кого угодно, так кого угодно — мне угодно взять себя. Беру себя. И отвечаю: самый великий физик это Исаак Ньютон.
Читать полностью »

Введение

Приветствую, уважаемые читатели! Сегодня предлагаю поразмышлять о следующей задачке:

Дано $n$ пар точек на плоскости $(x_1;y_1),...,(x_n;y_n)$. Все $x_i$ различны. Необходимо найти многочлен $M(x)$ такой, что $M(x_i)=y_i$, где $iin{1,...,n}$

Переводя на русский язык имеем: Иван загадал $n$ точек на плоскости, а Мария, имея эту информацию, должна придумать функцию, которая (по меньшей мере) будет проходить через все эти точки. В рамках текущей статьи наша задача сводится к помощи Марии окольными путями.

«Почему окольными путями?» — спросите вы. Ответ традиционный: это статья является продолжением серии статей дилетантского характера про математику, целью которых является популяризация математического мира.
Читать полностью »

Всем доброго дня. В данной статье хочу показать один из графических методов построения математических моделей для динамических систем, который называется Bond graph («bond» — связи, «graph» — граф). В русской литературе, описания данного метода, я нашел только в Учебном пособии Томского политехнического университета, А.В. Воронин «МОДЕЛИРОВАНИЕ МЕХАТРОННЫХ СИСТЕМ» 2008 г. Также показать классический метод через уравнение Лагранжа 2 рода.

Моделирование динамических систем (метод Лагранжа и Bond graph approach) - 1
Читать полностью »

14-летний школьник из Днепропетровска (Украина) стал региональным финалистом Google Science Fair. В основе его проекта — установка в точке Лагранжа L1 специального светопоглощающего экрана, диаметром 150 км. Для его создания необходим… астероид диаметром 300 метров, измельченный в гранулы с размером 1 миллиметр. Облако полученной пыли не будет рассеиваться:
«Такое сочетание электрического и магнитного полей позволит установить в районе точки Лагранжа стойкое динамическое облако пыли, которое будет защищать Землю от глобального потепления».

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js