Рубрика «квазислучайность»

Большинство двухмерных квазислучайных методов рассчитано на сэмплирование в единичном квадрате. Однако в компьютерной графике также очень важны треугольники. Поэтому я описал простой метод прямого построения для равномерного покрытия последовательностью точек треугольника произвольной формы.

Равномерное распределение точек в треугольнике - 1

Рисунок 1. Новый прямой метод построения открытой (бесконечной) квазислучайной последовательности с низким расхождением в треугольнике произвольной формы и размера. На рисунке показаны распределения точек в пятнадцати случайных треугольниках для первых 150 точек.

Краткий обзор

Последовательности с низким расхождением (low discrepancy), равномерно сэмплирующие/заполняющие квадрат, активно изучались почти сотню лет. БОльшую часть этих квазислучайных последовательностей можно расширить до прямоугольников простым растягиванием, не сильно повредив при этом расхождению.

Однако в этом посте мы рассмотрим интересное и важное расширение последовательностей с низким расхождением на произвольный треугольник.
Читать полностью »

Небольшое расхождение - 1

На этом снимке запечатлена сетчатая столешница стола в патио, сфотографированная после сильного дождя. В некоторых отверстиях сетки задержались капли воды. Что можно сказать о распределении этих капель? Разбросаны ли они случайно по поверхности? Процесс падения дождя, расположивший их, кажется достаточно случайным, но на мой взгляд, паттерн занятых в сетке мест выглядит подозрительно ровным и однообразным.

Чтобы упростить анализ, я выделил квадратную часть фотографии со столешницей (убрав отверстие для зонта), и выделил координаты всех капель в этом квадрате. Всего в нём 394 капель, которые я обозначил синими точками:

positions of 394 raindrops on a tabletop

Повторю вопрос: выглядит ли этот паттерн как результат случайного процесса?
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js