Рубрика «квантовая механика» - 3

Квантовая механика окружена ореолом таинственности. Зачастую, этот ореол возникает из-за того, что популярные источники излагают материал, не придерживаясь какой либо определенной интерпретации, а иногда пытаются втиснуть современные факты в прокрустово ложе старой Копенгагенской интерпретации.

Квантовая механика: конец войны интерпретаций - 1

Читать полностью »

image

Как профессор математики перестал бояться и полюбил алгебраическую геометрию.

На шестом десятке уже поздно становиться настоящим специалистом по алгебраической геометрии, но мне наконец-то удалось в неё влюбиться. Как и следует из её названия, этот раздел математики использует для изучения геометрии алгебру. Примерно в 1637 году Рене Декарт заложил фундамент этой области знаний, взяв плоскость, мысленно нарисовав на ней сетку и обозначив координаты за x и y. Можно записать уравнение вида x2+ y2 = 1, и получить кривую, состоящую из точек, координаты которых удовлетворяют этому уравнению. В этом примере мы получим круг.

Для того времени это была революционная идея, потому что она позволяет нам системным образом преобразовывать вопросы геометрии в вопросы об уравнениях, которые при достаточном знании алгебры можно решить. Некоторые математики занимались этой великолепной областью всю свою жизнь. Мне она до последнего времени не нравилась, но я смог связать её с моим интересом к квантовой физике.
Читать полностью »

image

Алгоритм Wave Function Collapse генерирует битовые изображения, локально подобные входному битовому изображению.

Локальное подобие означает, что

  • (C1) Каждый паттерн NxN пикселей в выходных данных должен хотя бы раз встречаться во входных данных.
  • (Слабое условие C2) Распределение паттернов NxN во входных данных должно быть подобным распределению паттернов NxN в значительно большом количестве наборов выходных данных. Другими словами, вероятность встречи определённого паттерна в выходных данных должна быть близка к плотности таких паттернов во входных данных.

Читать полностью »

котики

Мы добавили правила на основе квантовой теории в шашки, чтобы сделать их менее предсказуемыми и сломать стандартные тактики игры. Это не просто игра, это интерактивное представление квантовой теории с такими эффектами как суперпозиция и квантовая запутанность. Читать полностью »

image

1. Энтропия измеряет не беспорядок, а вероятность

Идея о том, что энтропия – это мера беспорядка, совсем не помогает разобраться в вопросе. Допустим, я делаю тесто, для чего я разбиваю яйцо и выливаю его на муку. Затем добавляю сахар, масло, и смешиваю их до тех пор, пока тесто не становится однородным. Какое состояние является более упорядоченным – разбитое яйцо и масло на муке, или получившееся тесто?

Я бы сказала, что тесто. Но это состояние с большей энтропией. А если вы выберете вариант с яйцом на муке – как насчёт воды и масла? Энтропия выше, когда они разделены, или после того, как вы их яростно потрясёте, чтобы смешать? В данном примере энтропия выше у варианта с разделёнными веществами.

Энтропия определяется как количество “микросостояний”, дающих одно и то же “макросостояние”. В микросостояниях содержатся все детали по поводу отдельных составляющих системы. Макросостояние же характеризуется только общей информацией, вроде “разделено на два слоя” или “в среднем однородное”. У ингредиентов теста есть много разных состояний, и все они при смешивании превратятся в тесто, однако очень мало состояний сможет при смешивании разделиться на яйца и муку. Поэтому, у теста энтропия выше. То же работает для примера с водой и маслом. Их легче разделить, тяжелее смешать, поэтому у разделённого варианта энтропия выше.
Читать полностью »

Возможна ли мгновенная передача информации? Эксперименты с квантово запутанными частицами - 1

Доброго времени суток всем!
Мы продолжаем рассматривать возможности квантовой механики для передачи информации с использованием корреляции квантово-запутанных частиц. В отличие от классических способов связи, использование квантово запутанных частиц дает потенциальную возможность мгновенно передавать информацию на большие расстояния. Трудность заключается в том, чтобы найти способы кодирования и декодирования передаваемой информации. Данная статья посвящена поиску решений данной задачи и возможности создания экспериментальной установки. Если вас тоже интересует данная задача — добро пожаловать под кат!
Читать полностью »

Разбираем популярный миф: «Вещество на 99% состоит из пустоты» - 1

При обсуждении строения атома и вещества часто можно прочитать, что вещество на 99.99…% состоит из пустоты, с разными версиями количества девяток. Как мы сейчас увидим, это утверждение имеет весьма шаткие основания, а попытки оценить долю пустоты в веществе могут с одинаковым успехом дать любое число от 0 до 100%. Последовательное же рассмотрение вопроса в рамках квантовой механики показывает, что от пустоты вещество отличается довольно сильно.

Читать полностью »

Манипуляции с магнитными свойствами наноструктур за счет электрического поля - 1

В предыдущей статье мы уже говорили о манипуляциях со свойствами веществ, используемых в создании устройств хранения информации. В том случае это было переключение ферромагнитных свойств. А что если не использовать магнитное поле и вообще не касаться таких понятий как магнетизм? Возможно ли будет сделать производительное и надежное устройство? Именно в этом направлении и проводились исследования Рандалл Виктора (Randall H Victora) и Ахмед Рассем Ваззан (Ahmed Rassem Wazzan). Главной темой данного исследования было управление магнитными свойствами наноструктур посредством электрического поля. Целью же было рассмотрение возможностей создания энергоэффективной памяти высокой плотности. Подробности мы узнаем, ознакомившись с докладом ученых. Поехали.Читать полностью »

«Копенгагенская» квантовая механика говорит, что реальность не существует, пока она не измерена, поэтому многие продолжают искать альтернативы этой интерпретации

Краткая история квантовых альтернатив - 1

В 1915 году Альберт Эйнштейн с помощью своих друзей разработал теорию гравитации, перевернувшую всё то, что мы считали самим фундаментом физической реальности. Мысль о том, что населяемое нами пространство не может быть совершенно описано евклидовой геометрией, была непостижимой; настолько, что философ Иммануил Кант, во многих смыслах радикальный мыслитель, заявил, что никакая теория физики не сможет с ней справиться.

Позже физик Вернер Гейзенберг указал на смысл ошибки Канта. Великий философ постулировал, что наше интуитивное понимание древней геометрии Евклида означало, что она была необходимым основанием физической реальности. На самом деле это оказалось неверным, поставив под вопрос всю философскую систему Канта.

Несмотря на радикальный разрыв с прошлыми представлениями о пространстве и времени, теории Эйнштейна вскоре соединились с идеями Ньютона как часть "классической физики". Человечество вынуждено было это сделать, потому что революция научной мысли оказалась столь глубокой, что создала яркий след в истории науки: разработку теории квантовой физики.

Что можно назвать научной революцией более глубокой, чем общая теория относительности? Что могло создать тектонический сдвиг, более мощный, чем идея о том, что сами пространство и время искривляются материей?
Читать полностью »

А вы любите шпаргалки? Мы обожаем и поэтому сегодня публикуем статью, в которой собрана вся самая главная информация о квантовых вычислениях. Мы собрали её из пяти статей по теме, которые вышли до этого. Но самое главное — это только шпаргалка, а не quick-guide для новичков. Новичкам советуем изучать все статьи целиком, ссылки есть в списке под катом!

Квантовые вычисления: справочные материалы - 1Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js