Введение
В данной статье рассматривается возможность представление произвольного полинома произвольной целой степени n в виде конечных разностей. Подход в данной статье отличается от уже имеющихся тем, что все формулы выводятся для произвольного полинома с произвольными коэффициентами, а также тем, что в качестве интервала между точками используется произвольный, а не единичный интервал. Полученные формулы универсальны, и могут без изменения использоваться как для вычисления «будущих», так и «прошлых» значений полинома. То есть, например, для любой кривой, выраженной квадратичным уравнением с произвольными коэффициентами, можно вычислить все значения имея лишь 3 заранее известных значения y, взятые через произвольный равный интервал φ. Как следствие, вводится утверждение, что через (n+1) равноотстоящих точек может быть проведена одна и только одна кривая, выраженная полиномом степени n.
Читать полностью »