Рубрика «Компиляторы» - 44

С момента появления тасков в .NET прошло почти 6 лет. Однако я до сих пор вижу некоторую путаницу при использовании Task.Run() и Task.Factory.StartNew() в коде проектов. Если это можно списать на их схожесть, то некоторые проблемы могут возникнуть из-за dynamic в C#.

В этом посте я попытаюсь показать проблему, решение и истоки.

Проблема

Пусть у нас есть код, который выглядит так:

static async Task<dynamic> Compute(Task<dynamic> inner)
{
    return await Task.Factory.StartNew(async () => await inner);
}

Вопрос знатокам: есть ли в данном примере проблема? Если да, то какая? Код компилируется, возвращаемый тип Task на месте, модификатор async при использовании await — тоже.

Думаете, речь идет о пропущенном ConfigureAwait? Хаха!
Читать полностью »

Суперскалярный стековый процессор: продолжаем скрещивать ужа и ежа - 1
Продолжение статьи, где удалось продемонстрировать, что фронтенд стековой машины вполне позволяет спрятать за ним суперскалярный процессор с OoO.
Тема данной статьи — вызов функций.
Читать полностью »

Проверяем исходный код плагина PVS-Studio с помощью PVS-Studio - 1

Один из вечных вопросов, с которыми мы встречаемся, звучит так — «Вы проверяли PVS-Studio с помощью PVS-Studio? Где статья о результатах проверки?». Да, мы регулярно делаем это, поэтому мы никак не могли написать статью об ошибках, которые нашли сами в себе. Ошибки исправляются разработчиками ещё на этапе написания кода, и мы постоянно забываем в этот момент их выписать. Но читателям в этот раз повезло. Из-за недосмотра C# код плагина для Visual Studio не был добавлен в ежедневные ночные проверки, которые мы проводим. И, соответственно, в отличие от ядра анализатора, ошибки в нем не замечались на протяжении всего развития C# PVS-Studio. Как говорится, нет худа без добра, и благодаря этому вы и читаете данную статью.
Читать полностью »

SFML и Code::Blocks (MinGW) - 1

От переводчика: данная статья является второй в цикле переводов официального руководства по библиотеке SFML. Прошлую статью можно найти тут. Данный цикл статей ставит своей целью предоставить людям, не знающим язык оригинала, возможность ознакомится с этой библиотекой. Оригинал можно найти тут. Начнем.
Читать полностью »

Суперскалярный стековый процессор: скрещиваем ужа и ежа - 1
В данной статье мы будем разрабатывать (программную) модель суперскалярного процессора с OOO и фронтендом стековой машины.
Читать полностью »

В нашем проекте PT Application Inspector реализовано несколько подходов к анализу исходного кода на различных языках программирования:

  • поиск по сигнатурам;
  • исследование свойств математических моделей, полученных в результате статической абстрактной интерпретации кода;
  • динамический анализ развернутого приложения и верификация на нем результатов статического анализа.

Наш цикл статей посвящен структуре и принципам работы модуля сигнатурного поиска (PM, pattern matching). Преимущества такого анализатора — скорость работы, простота описания шаблонов и масштабируемость на другие языки. Среди недостатков можно выделить то, что модуль не в состоянии анализировать сложные уязвимости, требующие построения высокоуровневых моделей выполнения кода.

Теория и практика парсинга исходников с помощью ANTLR и Roslyn - 1
К разрабатываемому модулю были, в числе прочих, сформулированы следующие требования:

  • поддержка нескольких языков программирования и простое добавление новых;
  • поддержка анализа кода, содержащего синтаксические и семантические ошибки;
  • возможность описания шаблонов на универсальном языке (DSL, domain specific language).

В нашем случае все шаблоны описывают какие-либо уязвимости или недостатки в исходном коде.

Весь процесс анализа кода может быть разбит на следующие этапы:

  1. парсинг в зависимое от языка представление (abstract syntax tree, AST);
  2. преобразование AST в независимый от языка унифицированный формат;
  3. непосредственное сопоставление с шаблонами, описанными на DSL.

Данная статья посвящена первому этапу, а именно: парсингу, сравнению функциональных возможностей и особенностей различных парсеров, применению теории на практике на примере грамматик Java, PHP, PLSQL, TSQL и даже C#. Остальные этапы будут рассмотрены в следующих публикациях.
Читать полностью »

«Она истинный морпех, но если копнуть глубже, мы найдем пирата.»

Грэйс «бабуля COBOL» Хоппер - 1

Грейс Хоппер (Grace Hopper) — американская учёная и контр-адмирал флота США. Программист гарвардского компьютера Марк I.

  • В детстве разобрала 7 будильников, чтобы понять, как все устроено.
  • Боролась за идею машинонезависимого языка программирования.
  • Разработала первый компилятор.
  • Приложила руку к распространению мема «дебаггинг» (выловив настоящего жука из Mark 2).
  • Могла объяснить сообразительным военным, что такое «наносекунда» и «пикосекунда». На пальцах.
  • В её честь назвали эсминец USS Hopper (DDG-70).
  • И суперкомпьютер Cray XE6 «Hopper».
  • И в ее честь именная премия Ассоциациеи вычислительной техники (ACM) — присуждается молодому (до 35 лет) специалисту, сделавшему значительный вклад в области вычислительной техники.

Построив успешную карьеру математика в Йеле (защитив докторскую и став профессором), Грэйс Хоппер в 1943 (37 лет) пошла добровольцем во Флот.
Но у нее был недобор по весу 6 кг, поэтому пришлось сесть «за клавиатуру» Гарвардского Mark 1.
Грэйс «бабуля COBOL» Хоппер - 2
Читать полностью »

ОС Фантом — экспериментальная операционная система, содержащая на прикладном уровне виртуальную байткод-машину в персистентной оперативной памяти.

Один из двух ключевых запланированных для ОС Фантом путей миграции существующего кода — преобразование байткода Java в байткод Фантом.

Надо сказать, что эти виртуальные машины изрядно, хотя и совершенно случайно, похожи. Виртуальная машина Фантома была спроектирована тогда, когда про Явскую я ещё ничего не знал, но, наверное, сходство целей привело к сходству принятых решений.

Обе машины — стековые. Обе оперируют двумя отдельными стеками — стеком для работы с объектами (на стеке лежат только ссылки), и бинарным стеком — для вычислений. Машина Фантома имеет также отдельные стеки для фреймов функций и ловушек исключений. Как эта часть устроена в JVM, я не знаю до сих пор, но полагаю, что вряд ли кардинально отличным образом.

Естественно, что и набор операций стековых машин местами схож как две капли.

Но, безусловно, есть и весьма существенные отличия.

Во-первых, виртуальная машина Фантома предназначена для работы прикладного кода в менее дружественной среде. Ява исходит из того, что каждая программа живёт в отдельном адресном пространстве, и всё, что вокруг — “наш” код. Фантом допускает прямые вызовы между приложениями разных пользователей и разных программ, что требует более жёсткого отношения к некоторым аспектам виртуальной машины, включая тот же вызов, да и интерфейс объекта вообще. Например, мы не можем полагаться на то, что вызванный метод ведёт себя “прилично” — нельзя давать ему доступ в свой стек, нельзя полагаться на наличие или отсутствие возвращаемого значения. Нельзя гарантировать различие между методом, функцией и статической функцией. То есть, мы можем предполагать, что именно мы вызываем, но что нам «подсунули» с той стороны — неизвестно.

В силу всего сказанного, вызов в Фантоме унифицирован абсолютно — это всегда вызов метода (есть this и есть класс), и всегда возвращается значение, которое для void метода равно null и явно уничтожается вызывающим кодом. Это гарантирует, что какая бы ошибка вызова не случилась, что бы не подвернулось в качестве предмета вызова, протокол вызова и возврата будет соблюдён.
Читать полностью »

Представим себе, что в один прекрасный день вам пришла в голову идея процессора собственной, ни на что не похожей архитектуры, и вам очень захотелось эту идею реализовать «в железе». К счастью, в этом нет ничего невозможного. Немного верилога, и вот ваша идея реализована. Вам уже снятся прекрасные сны про то, как Intel разорилась, Microsoft спешно переписывает Windows под вашу архитектуру, а Linux-сообщество уже написало под ваш микропроцессор свежую версию системы с весьма нескучными обоями.
Однако, для всего этого не хватает одной мелочи: компилятора!
Да, я знаю, что многие не считают наличие компилятора чем-то важным, считая, что все должны программировать строго на ассемблере. Если вы тоже так считаете, я не буду с вами спорить, просто не читайте дальше.
Если вы хотите, чтобы для вашей оригинальной архитектуры был доступен хотя бы язык С, прошу под кат.
В статье будет рассматриваться применение инфраструктуры компиляторов LLVM для построения собственных решений на её основе.
Область применения LLVM не ограничивается разработкой компиляторов для новых процессоров, инфраструктура компиляторов LLVM также может применяться для разработки компиляторов новых языков программирования, новых алгоритмов оптимизации и специфических инструментов статического анализа программного кода (поиск ошибок, сбор статистики и т.п.).
Например, вы можете использовать какой-то стандартный процессор (например, ARM) в сочетании с специализированным сопроцессором (например, матричный FPU), в этом случае вам может понадобиться модифицировать существующий компилятор для ARM так, чтобы он мог генерировать код для вашего FPU.
Также интересным применением LLVM может быть генерация исходных текстов на языке высокого уровня («перевод» с одного языка на другой). Например, можно написать генератор кода на Verilog по исходному коду на С.

LLVM: компилятор своими руками. Введение - 1

КДПВ

Читать полностью »

Как непродуманные предупреждения компиляторов помогают портить совершенно правильный код - 1Это пост о сложностях взаимодействия искусственного и естественного интеллекта. Современные компиляторы имеют довольно развитые средства статического анализа, которые умеют выдавать предупреждения на разные подозрительные конструкции в коде. В теории эти предупреждения должны помочь разработчикам делать меньше ошибок в коде.

На практике далеко не всегда предупреждения компилятора одинаково полезны. Зачастую они не помогают разработчикам, а мешают им и могут провоцировать на исправление совершенно правильного кода, т.е. на нарушение правила «работает — не трогай».
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js