Рубрика «коллаборативная фильтрация»

Вы приходите домой и включаете любимый стриминг. Лента сразу же выдаёт вам несколько фильмов и сериалов, которые… действительно хочется смотреть. Сегодня разберём, как именно рождается эта магия вне Хогвартса, и что сидит под капотом рекомендательного движка онлайн-кинотеатра.

Читать полностью »

Меня зовут Павел Пархоменко, я ML-разработчик. В этой статье я хотел бы рассказать об устройстве сервиса Яндекс.Дзен и поделиться техническими улучшениями, внедрение которых позволило увеличить качество рекомендаций. Из поста вы узнаете, как всего за несколько миллисекунд находить среди миллионов документов наиболее релевантные для пользователя; как делать непрерывное разложение большой матрицы (состоящей из миллионов столбцов и десятков миллионов строк), чтобы новые документы получали свой вектор за десятки минут; как переиспользовать разложение матрицы пользователь-статья, чтобы получить хорошее векторное представление для видео.

Как мы работаем над качеством и скоростью подбора рекомендаций - 1
Читать полностью »

Рекомендательные системы: идеи, подходы, задачи - 1

Многие привыкли ставить оценку фильму на КиноПоиске или imdb после просмотра, а разделы «С этим товаром также покупали» и «Популярные товары» есть в любом интернет- магазине. Но существуют и менее привычные виды рекомендаций. В этой статье я расскажу о том, какие задачи решают рекомендательные системы, куда бежать и что гуглить.
Читать полностью »

Приветствую, %username%. Сегодня я расскажу о такой вещи, как коллаборативная фильтрация для сравнения двух наборов данных. После разработаем скрипт составления рейтинга схожести интересов между людьми.

Заинтересовались? Прошу под кат

Читать полностью »

Во время общения с медиа мы в Relap.io часто сталкиваемся с массой заблуждений, в которые все верят, потому что так сложилось исторически. На сайте есть блоки типа «Читать также» или «Самое горячее» и т.п. Словом, всё то, что составляет обвязку статьи и стремится дополнить UX дорогого читателя. Мы расскажем, какие заблуждения есть у СМИ, которые делают контентные рекомендации, и развеем их цифрами.

HAbr1

Читать полностью »

Во время общения с медиа мы в Relap.io часто сталкиваемся с массой заблуждений, в которые все верят, потому что так сложилось исторически. На сайте есть блоки типа «Читать также» или «Самое горячее» и т.п. Словом, всё то, что составляет обвязку статьи и стремится дополнить UX дорогого читателя. Мы расскажем, какие заблуждения есть у СМИ, которые делают контентные рекомендации, и развеем их цифрами.
 
HAbr1
 
 

Рекомендовать по тегам

Самое большое и самое популярное заблуждение. Чаще всего СМИ делают рекомендации в конце статьи по тегам. Так поступает Look At Me и РБК, например. Есть материал с тегами: трактор, Путин, сыр. К нему выводятся тексты про трактора, про Путина и сыр. На первый взгляд, логично:
вилладж
Подобная механика рекомендаций в реальной жизни выглядела бы так. Вы идёте в магазин за продуктами. И кладёте в корзину сливочное масло. К вам подходит консультант с потными от волнения ладошками и говорит: «О, я вижу, вы взяли масло и это значит, что вам нужно масло. Возьмите еще пять видов сливочного деревенского и подсолнечного и козьего масла». Максимум, что может случиться из ряда вон выходящее — вам предложат трансмиссионное, если вы читали что-то про автомобили. И это уже будет считаться rocket science.Читать полностью »

Привет, меня зовут Михаил Ройзнер. Недавно я выступил перед студентами Малого Шада Яндекса с лекцией о том, что такое рекомендательные системы и какие методы там бывают. На основе лекции я подготовил этот пост.

План лекции:

  1. Виды и области применения рекомендательных систем.
  2. Простейшие алгоритмы.
  3. Введение в линейную алгебру.
  4. Алгоритм SVD.
  5. Измерение качества рекомендаций.
  6. Направление развития.

Читать полностью »

Робот-рекомендатель

Одной из наиболее популярных техник для построения персонализированных рекомендательных систем (RS, чтобы не путать с ПиСи) является коллаборативная фильтрация. Коллаборативная фильтрация бывает двух типов: user-based и item-based. User-based часто используется в качестве примера построения персонализированных RS [на хабре, в книге Т.Сегаран,...]. Тем не менее, у user-based подхода есть существенный недостаток: с увеличением количества пользователей RS линейно увеличивается сложность вычисления персонализированной рекомендации.

Когда количество объектов для рекомендаций большое, затраты на user-based подход могут быть оправданы. Однако во многих сервисах, в том числе и в ivi.ru, количество объектов в разы меньше количества пользователей. Для таких случаев и придуман item-based подход.

В этой статье я расскажу, как за несколько минут можно создать полноценную персонализированную RS на основе item-based подхода.
Читать полностью »

У большинства крупных поисковиков и сервисов есть механизм похожих поисковых запросов, когда пользователю предлагаются варианты, тематически близкие к тому, что он искал. Так делают в google, yandex, bing, amazon, несколько дней назад это появилось и у нас на hh.ru!

Похожие поисковые запросы в hh.ru

В этой статье я расскажу о том, как мы добывали похожие поисковые запросы из логов сайта hh.ru.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js