Рубрика «клеточные автоматы» - 3

О циклических клеточных автоматах было написано в этой статье. Целью данной статьи является рассмотрение условий возникновения спиралей, также известных как демоны. Средством достижения цели является изменение начальных условий и слежение за развитием клеточного автомата. В результате будут сделаны обобщающие выводы об условиях образования спиралей.

Кратко опишем циклический клеточной автомат.

Решетка представляет собой замкнутую двумерную ортогональную сетку квадратных клеток, каждая из которых находится в одном из 15 возможных состояний, в пределах от 0 до 14.

О возникновении спиралей в циклическом клеточном автомате - 1

Каждая ячейка взаимодействует со своими четырьмя соседями — окрестностью фон Неймана. Окрестность фон Неймана — это ячейки, которые расположены горизонтально и вертикально. Ниже приведен набор правил циклического клеточного автомата.

О возникновении спиралей в циклическом клеточном автомате - 2

Первое поколение начинается со случайных состояний в каждой из ячеек. Следующее поколение создается путем применения вышеуказанных правил одновременно к каждой ячейке предыдущего поколения. Изменение состояния происходит для каждой ячейки одновременно. Другими словами, каждое поколение является чистой функцией предыдущего. Правила продолжают применяться неоднократно, создавая новые поколения.

О возникновении спиралей в циклическом клеточном автомате - 3

Как видно из рисунка выше, клеточный автомат проходит три этапа:

1. Случайное поле.
2. Цветные области.
3. Спирали, также известные как демоны.

Добавим еще одно измерение к решетке. В этом измерении мы отобразим состояние ячейки. Ячейка будет подниматься до тех пор, пока она не достигнет вершины кубоида, а затем она упадет вниз. Такая модель является хорошим представлением об изменении состояния клеточного автомата.

О возникновении спиралей в циклическом клеточном автомате - 4

Выберем несколько (например 12) случайных ячеек и рассмотрим изменение их состояний во времени. Читать полностью »

Здравствуйте, дорогие жители ! В этой публикации (а, скорее всего, и цикле) я расскажу о моей реализации одного из алгоритмов шифрования. Почему о реализации? Потому что идея не нова, и утверждать то, что задумка принадлежит именно мне, нельзя. Но способ достаточно интересный, поэтому узнать о нём стоит.

В этой части я достаточно кратко опишу принцип работы самого алгоритма и мою реализацию.
Читать полностью »

Фильмы, где огромные армии сходятся друг с другом на поле боя в эпичной битве обычно вызывают в людях бурю эмоций. Сцены сражений из "Звездных войн" с мастерски владеющими световыми мечами джедаями и ордами боевых дроидов — не исключение.

Но иногда бывает интересно посмотреть на сам процесс битвы как бы с высоты птичьего полета и увидеть весь ход развития событий. Для этого можно использовать различные средства виртуальной симуляции. В этом посте приведен пример моделирования битвы между боевыми дроидами Федерации и орденом Джедаев с помощью такой простой дискретной модели как клеточный автомат.

Битва дроидов и джедаев на клеточном автомате - 1

Читать полностью »

Памяти Соломона Голомба (1932-2016): автора регистра сдвига с линейной обратной связью максимальной длины и полиомино - 1

Перевод поста Стивена Вольфрама (Stephen Wolfram) "Solomon Golomb (1932–2016)".
Выражаю огромную благодарность Полине Сологуб за помощь в переводе и подготовке публикации


Содержание

Наиболее часто используемый математический алгоритм в истории
Как я встретил Сола Голомба
История Соломона Голомба
Регистры сдвига
Предыстория регистров сдвига
Для чего нужны последовательности, генерируемые регистрами сдвига?
Ну и где же эти регистры?
Клеточные автоматы и регистры сдвига с нелинейной обратной связью
Полиомино
Остальная часть истории


Наиболее часто используемый математический алгоритм в истории

Октиллион. Миллиард миллиардов миллиардов. Это очень приблизительная оценка того, сколько раз мобильный телефон или другое устройство сгенерировало бит с помощью регистра сдвига с линейной обратной связью максимальной длины. Думаю, это самый используемый математический алгоритм в истории. Автор — Соломон Голомб, скончавшийся 1 мая, с которым мы были знакомы больше 35 лет.

Основой книги Соломона Голомба «Последовательности регистрового сдвига», опубликованной в 1967 году, были его работы 1950-х гг. А ее содержание живет в каждой из современных систем связи. Прочтите спецификации для 3G, LTE, Wi-Fi, Bluetooth или даже для GPS, — и вы найдете упоминания о многочленах, определяющих последовательности, генерируемые регистрами сдвига, которые эти системы используют для кодирования отправляемых ими данных. Соломон Голомб — человек, который создал эти многочлены.
Читать полностью »

Музыка, Mathematica и вычислительная вселенная: автоматическое создание музыки на основе клеточных автоматов - 1

Перевод поста Стивена Вольфрама (Stephen Wolfram) "Music, Mathematica, and the Computational Universe" о замечательном ресурсе WolframTones, работа которого была недавно возобновлена на новой площадке Wolfram Cloud (сайт, созданный в 2005 г., был недоступен пару лет, так как использовал не поддерживаемые современными браузерами решения).
Выражаю огромную благодарность Кириллу Гузенко за помощь в переводе.


Музыка, Mathematica и вычислительная вселенная: автоматическое создание музыки на основе клеточных автоматов - 2


Насколько сложно создать человеческую музыку? Такую, чтобы пройти музыкальный аналог теста Тьюринга?

Хотя музыка обычно имеет определенную формальную структуру, что отмечали пифагорейцы ещё 2500 лет назад, по своей сути она весьма человечна: отражение чистого творчества, которое есть суть определяющая характеристика человеческих способностей.

Но что есть творчество? Это то, что было необходимо в течение всей биологической и культурной эволюции? И может ли оно также существовать в системах, которые не имеют ничего общего с людьми?

В своей работе над книгой Новый вид науки (A New Kind of Science) я исследовал вычислительную вселенную возможных программ и обнаружил, что даже очень простые программы могут показывать поразительно богатый и сложный характер, наравне, например, с тем, что можно встретить в природе. И, опираясь на разработанный принцип вычислительной эквивалентности, я пришел к убеждению, что не может быть ничего, что принципиально отличает наши человеческие способности от любых процессов, которые происходят в природе, или даже в очень простых программах.

Но что можно сказать о музыке? Некоторые люди, выступая против принципа вычислительной эквивалентности, в качестве аргумента использовали свою веру в то, что "не могут существовать простые программы, которые смогут произвести серьёзную музыку".

И мне стало любопытно: действительно ли музыка есть что-то особенное и исключительно человеческое? Или всё таки её можно прекрасно создавать автоматически, с помощью вычислений?
Читать полностью »

Что такое пространство-время на самом деле? - 1

Перевод поста Стивена Вольфрама "What Is Spacetime, Really?".
Выражаю огромную благодарность Кириллу Гузенко KirillGuzenko за помощь в переводе и подготовке публикации.

Примечание: данный пост Стивена Вольфрама неразрывно связан с теорией клеточных автоматов и других смежных понятий, а также с его книгой A New Kind of Science (Новый вид науки), на которую из этой статьи идёт большое количество ссылок. Пост хорошо иллюстрирует применение программирования в научной сфере, в частности, Стивен показывает (код приводится в книге) множество примеров программирования на языке Wolfram Language в области физики, математики, теории вычислимости, дискретных систем и др.


Содержание

Простая теория всего?
Структура данных Вселенной
Пространство как граф
Может быть, нет ничего, кроме пространства
Что есть время?
Формирование сети
Вывод СТО
Вывод ОТО (Общей теории относительности)
Частицы, квантовая механика и прочее
В поисках вселенной
Ок, покажите мне Вселенную
Заниматься физикой или нет — вот в чем вопрос
Что требуется?
Но пришло ли время?


Сто лет назад Альберт Эйнштейн опубликовал общую теорию относительности — блестящую, элегантную теорию, которая пережила целый век и открыла единственный успешный путь к описанию пространства-времени (пространственно-временного континуума).

Есть много различных моментов в теории, указывающих, что общая теория относительности — не последняя точка в истории о пространстве-времени. И в самом деле, пускай мне нравится ОТО как абстрактная теория, однако я пришел к мысли, что она, возможно, на целый век увела нас от пути познания истинной природы пространства и времени.

Я размышлял об устройстве пространства и времени немногим более сорока лет. В начале, будучи молодым физиком-теоретиком, я просто принимал эйнштейновскую математическую постановку задачи специальной и общей теории относительности, а так же занимался некоторой работой в квантовой теории поля, космологии и других областях, основываясь на ней.

Но около 35 лет назад, отчасти вдохновленный своим опытом в технических областях, я начал более детально исследовать фундаментальные вопросы теоретической науки, с чего и начался мой длинный путь выхода за рамки традиционных математических уравнений и использования вместо них вычислений и программ как основных моделей в науке. Вскоре после этого мне довелось выяснить, что даже очень простые программы могут демонстрировать очень сложное поведение, а затем, спустя годы, я обнаружил, что системы любого вида могут быть представлены в терминах этих программ.

Воодушевившись этим успехом, я стал размышлять, может ли это иметь отношение к важнейшему из научных вопросов — физической теории всего.

Во-первых, такой подход казался не слишком перспективным — хотя бы потому, что модели, которые я изучал (клеточные автоматы), казалось, работали так, что это полностью противоречило всему тому, что я знал из физики. Но где-то в 88-м году — в то время, когда вышла первая версия Mathematica, я начал понимать, что если бы я изменил свои представления о пространстве и времени, возможно, это к чему то бы меня привело.
Читать полностью »

Стивен Вольфрам: Рубежи вычислительного мышления (отчёт с фестиваля SXSW) - 1

Перевод поста Стивена Вольфрама (Stephen Wolfram) "Frontiers of Computational Thinking: A SXSW Report".
Выражаю огромную благодарность Кириллу Гузенко за помощь в переводе.


На прошлой неделе я выступал на SXSW Interactive 2015 в Остине, штат Техас. Вот несколько отредактированная стенограмма моего выступления:

Стивен Вольфрам: Рубежи вычислительного мышления (отчёт с фестиваля SXSW) - 2

Содержание

Наиболее продуктивный год
Язык Wolfram Language
Язык для реального мира
Философия Wolfram Language
Программы размером в один твит
Вычислительное мышление для детей
Ввод запросов на естественном языке
Масштабная идея: Символьное программирование
Язык для развёртывания
Автоматизация программирования
Масштабные программы
Интернет вещей
Машинное обучение
Исследования Вычисляемой Вселенной
Вычислять, подобно тому, как это делает мозг
Язык как символьное представление
Пост-лингвистические понятия
Древняя история
Чем будет заниматься искусственный интеллект?
Бессмертие и за его пределами
Коробка триллиона душ
Обратно в 2015 год
Читать полностью »

Иглобрюх и дары «Жизни» - 1

Многие программисты, по крайней мере моего поколения, знают игру «Жизнь», правила которой были предложены британским математиком Джоном Конвеем (John Conway) в 1970 году. Но что знают немногие, так это то, что она до сих пор активно развивается и радует новыми открытиями. Историей одного из таких открытий я хочу поделиться в этой статье.Читать полностью »

Здравствуйте. В этой статье я расскажу про свой хобби-проект не-фон неймановского компьютера. Архитектура соответствует функциональной парадигме: программа есть дерево применений элементарных функций друг к другу. Железо — однородная статическая сеть примитивных узлов, на которую динамическое дерево программы спроецировано, и по которой программа «ползает» вычисляясь. Не-фон неймановский компьютер на базе комбинаторной логики - 1
Примерно так работает дерево, только здесь для наглядности вычисляются арифметическое выражение, а не комбинаторное; шаг на рисунке — один такт машины.

Сейчас готов ранний прототип, существующий как в виде потактового программного симулятора, так и в виде реализации на ПЛИС.
Читать полностью »

В этой статье предлагаются правила для двумерного клеточного автомата, который, с одной стороны очень похож на игру Жизнь Джона Конвея (Conway’s Game of Life), а с другой — обладает существенными отличиями. Прежде всего, его отличает увеличенное до трех количество состояний клеток, повышенная способность к самоорганизации, неограниченное время активной эволюции и неограниченное количество движущихся конфигураций.

Для стабильных конфигураций новые правила совпадают с правилами игры Жизнь, поэтому все стабильные конфигурации в игре Жизнь существуют и в новых правилах. В описываемом клеточном автомате существует большой класс движущихся конфигураций, космических кораблей. Все эти конфигурации перемещаются по одному и тому же поступательному механизму, который напоминает движение и шагового экскаватора и человека на костылях. Подобные космические корабли я назвал степпер (stepper), а само правило Steppers. Так его и будем называть в дальнейшем.

В Steppers существует довольно много осцилляторов, причем, некоторые осцилляторы из игры Жизнь работают и в Steppers, что говорит о преемственности правил. И, наконец, знаменитый глайдер Конвея, так же существует в предлагаемых правилах. В статье будет рассмотрена динамика случайным образом заполненных решеток, раскрыт механизм движения степперов, описаны найденные на данный момент осцилляторы и степперы. Так же будут приведены примеры столкновений и сложного функционального поведения.

_r00.png
[00] Пример движущейся конфигурации, генерирующей поток степперов
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js