Рубрика «классификация» - 2

Привет! Меня зовут Саша и я backend разработчик. В свободное от работы время я изучаю ML и развлекаюсь с данными hh.ru.

Эта статья о том, как мы с помощью машинного обучения автоматизировали рутинный процесс назначения задач на тестировщиков.

В hh.ru есть внутренняя служба, на которую в Jira создаются задачи (внутри компании их называют HHS), если у кого-то что-то не работает или работает неправильно. Дальше эти задачи вручную обрабатывает руководитель группы QA Алексей и назначает на команду, в чью зону ответственности входит неисправность. Лёша знает, что скучные задачи должны выполнять роботы. Поэтому он обратился ко мне за помощью по части ML.
Автоматическое назначение задач в Jira с помощью ML - 1
Читать полностью »

image

В этой статье я хочу рассказать о том, как мы создали систему поиска похожей одежды (точнее одежды, обуви и сумок) по фотографии. То есть, выражаясь бизнес-терминами, рекомендательный сервис на основе нейронных сетей.

Как и большинство современных IT-решений, можно сравнить разработку нашей системы со сборкой конструктора Lego, когда мы берем много маленьких деталек, инструкцию и создаем из этого готовую модель. Вот такую инструкцию: какие детали взять и как их применить для того, чтобы ваша GPU смогла подбирать похожие товары по фотографии, — вы и найдете в этой статье.

Из каких деталей построена наша система:

  • детектор и классификатор одежды, обуви и сумок на изображениях;
  • краулер, индексатор или модуль работы с электронными каталогами магазинов;
  • модуль поиска похожих изображений;
  • JSON-API для удобного взаимодействия с любым устройством и сервисом;
  • веб-интерфейс или мобильное приложение для просмотра результатов.

В конце статьи будут описаны все “грабли”, на которые мы наступили во время разработки и рекомендации, как их нейтрализовать.

Постановка задачи и создание рубрикатора

Задача и основной use-case системы звучит довольно просто и понятно:

  • пользователь подает на вход (например, посредством мобильного приложения) фотографию, на которой присутствуют предметы одежды и/или сумки и/или обувь;
  • система определяет (детектирует) все эти предметы;
  • находит к каждому из них максимально похожие (релевантные) товары в реальных интернет-магазинах;
  • выдает пользователю товары с возможностью перейти на конкретную страницу товара для покупки.

Говоря проще, цель нашей системы — ответить на знаменитый вопрос: “А у вас нет такого же, только с перламутровыми пуговицами?”
Читать полностью »

Представляю вашему вниманию вторую часть статьи о поиске подозреваемых в мошениничестве на основе данных из Enron Dataset. Если вы не читали первую часть, ознакомиться с ней можно здесь.

Сейчас речь пойдет про процесс построения, оптимизации и выбора модели, которая даст ответ: стоит ли подозревать человека в мошеничестве?

Enron

Читать полностью »

Корпорация Enron — это одна из наиболее известных фигур в американском бизнесе 2000-ых годов. Этому способствовала не их сфера деятельности (электроэнергия и контракты на ее поставку), а резонанс в связи с мошенничеством в ней. В течении 15 лет доходы корпорации стремительно росли, а работа в ней сулила неплохую заработную плату. Но закончилось всё так же быстротечно: в период 2000-2001гг. цена акций упала с 90$/шт практически до нуля по причине вскрывшегося мошенничества с декларируемыми доходами. С тех пор слово "Enron" стало нарицательным и выступает в качестве ярлыка для компаний, которые действуют по аналогичной схеме.

В ходе судебного разбирательства, 18 человек (в том числе крупнейшие фигуранты данного дела: Эндрю Фастов, Джефф Скиллинг и Кеннет Лей) были осуждены.

image![image](http://https://habrastorage.org/webt/te/rh/1l/terh1lsenbtg26n8nhjbhv3opfi.jpeg)

Вместе с тем были опубликованы архив электронной переписки между сотрудниками компании, более известный как Enron Email Dataset, и инсайдерская информация о доходах сотрудников данной компании.

В статье будут рассмотрены источники этих данных и на основе их построена модель, позволяющая определить, является ли человек подозреваемым в мошенничестве. Звучит интересно? Тогда, добро пожаловать под хабракат. Читать полностью »

Ботов отличать от людей и правда сложновато. Я и сам толком не могу это сделать. Но зато я придумал неплохой велоси... метод, как отличать в VK «интересных людей» от «не очень интересных». В плане сетевого общения, естественно, а не по жизни.

Выявление содержательных профилей в VK - 1


Читать полностью »

Всем привет!

В рамках нашего курса Data Scientist мы провели открытый урок на тему «Наивный баейсовский классификатор». Занятие вёл преподаватель курса Максим Кретов — ведущий исследователь в лаборатории нейронных сетей и глубокого обучения (МФТИ). Предлагаем ознакомиться с видео и кратким изложением.

Заранее спасибо.

Читать полностью »

Эмоциональный искусственный интеллект, помимо очевидной связи с машинным обучением и нейронными сетями, имеет прямое отношение к психологии и в частности к науке об эмоциях. В этой области сегодня остро стоят несколько вызовов. Один из них — формирование точной и полноценной классификации эмоциональных состояний, от которой в том числе напрямую зависит процесс аннотирования — сопоставления наблюдаемых выражений лица и других невербальных сигналов с определенными эмоциями и аффективными состояниями.

image
Читать полностью »

Прошло уже достаточно времени с момента публикации моей первой статьи на тему обработки естественного языка. Я продолжал активно исследовать данную тему, каждый день открывая для себя что-то новое.
Сегодня я бы хотел поговорить об одном из способов классификации поисковых запросов, по отдельным категориям с помощью нейронной сети на Keras. Предметной областью запросов была выбрана сфера автомобилей.
За основу был взят датасет размером ~32000 поисковых запросов, размеченных по 14ти классам: Автоистория, Автострахование, ВУ (водительское удостоверение), Жалобы, Запись в ГИБДД, Запись в МАДИ, Запись на медкомиссию, Нарушения и штрафы, Обращения в МАДИ и АМПП, ПТС, Регистрация, Статус регистрации, Такси, Эвакуация.Читать полностью »

Рабочие станции Dell – это мощные инструменты для создания профессионального контента самых разных типов. Все устройства линейки объединяет одно: они полностью совместимы со специализированным ПО, обладают высокой производительностью и очень надежны.

В достижении последнего одну из ключевых ролей играет правильный выбор накопителя для хранения данных. И к этой задаче у нас совершенно особый подход. Сегодня мы познакомим вас с методами, которые используем для классификации устройств хранения данных в рабочих станциях серии Dell Precision. Эта информация будет полезна тем, кто хочет разобраться в параметрах производительности самих рабочих станций и подсистем хранения.
Классификация устройств хранения данных в рабочих станциях, на примере линейки Dell Precision - 1
Читать полностью »

Всем, привет! Не секрет, что в последнее время в мире происходит резкий всплеск активности, по поводу исследования такой темы, как искусственный интеллект. Вот и меня это явление не обошло стороной.

Предыстория

Всё началось, когда в самолёте я посмотрел типичную, на первый взгляд американскую комедию – «Почему, он?» (англ. Why him? 2016). Там, у одного из ключевых персонажей в доме был установлен голосовой помощник, который нескромно позиционировал себя «как Siri, только круче». К слову бот из фильма умел не только вызывающе разговаривать с гостями, иногда ругаясь матом, но также контролировать весь дом и прилегающую территорию – от центрального отопления до смыва унитаза. После просмотра фильма, мне пришла идея реализовать что-то подобное и я начал писать код.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js