Рубрика «классификация изображений»
Как классифицировать данные без разметки
2021-09-07 в 11:30, admin, рубрики: data engineering, data science, machine learning, python, Блог компании FunCorp, классификатор данных, классификация изображений, машинное обучение, нейросети, обработка данных, обработка изображений, сверточные нейросетиПользователи iFunny ежедневно загружают в приложение около 100 000 единиц контента, среди которого не только мемы, но и расизм, насилие, порнография и другие недопустимые вещи.
А ну-ка, сгруппировались, или как отделить фото котиков от счетов ЖКХ
2021-01-21 в 11:29, admin, рубрики: ABBYY, AR, Блог компании ABBYY, классификация изображений, машинное обучение, мобильная разработка, мобильные приложения, нейросети, обработка изображений, Разработка под AR и VR, разработка под iOSУдобно сфотографировать на смартфон страницу из паспорта, визитку коллеги, договор с банком или чек из ресторана. Важные документы всегда будут под рукой, и их можно распечатать или переслать. Но быстро найти нужные файлы в галерее мобильного телефона становится все сложнее. Как правило, у пользователей копится целая коллекция мемчиков и картинок с котиками вперемешку с фотографиями счетов на оплату электричества, СНИЛС и др. У сотрудников компаний, например, выездных менеджеров банка или юридической фирмы, тоже бывают похожие ситуации. Только вместо изображений пушистиков – сотни фотографий клиентских договоров и других документов. Как отыскать необходимый экземпляр, чтобы отправить коллегам в офис, или как распечатать фото водительского удостоверения в правильном масштабе, а не на весь А4? Придется повозиться.
Гораздо проще решать все эти задачи с помощью одного приложения. Поэтому мы и обновили ABBYY FineScanner AI. Теперь он умеет автоматически сортировать фотографии из галереи смартфона на 7 групп документов и быстро ищет нужные фото по текстовым запросам.
Сегодня мы подробно расскажем, как создавали каждую из этих фич, какие технологии при этом использовали и как в этом помог фреймворк ABBYY NeoML. Также покажем, как это работает в приложении. А в конце – поделимся нашими планами по развитию FineScanner и зададим вам несколько вопросов.
Читать полностью »
Классификация рукописных рисунков. Доклад в Яндексе
2019-02-18 в 7:00, admin, рубрики: Google, Блог компании Яндекс, классификатор, классификация изображений, Компьютерное зрение, конкурсы разработчиков, машинное обучение, нейронные сети, распознавание образов, рукописный, Спортивное программированиеНесколько месяцев назад наши коллеги из Google провели на Kaggle конкурс по созданию классификатора изображений, полученных в нашумевшей игре «Quick, Draw!». Команда, в которой участвовал разработчик Яндекса Роман Власов, заняла в конкурсе четвертое место. На январской тренировке по машинному обучению Роман поделился идеями своей команды, финальной реализацией классификатора и интересными практиками соперников.
— Всем привет! Меня зовут Рома Власов, сегодня я вам расскажу про Quick, Draw! Doodle Recognition Challenge.
Читать полностью »
iMaterialist Furniture Challenge или 50 оттенков стульев
2018-06-22 в 8:51, admin, рубрики: computer vision, kaggle, keras, neural networks, python, Алгоритмы, искусственный интеллект, классификация изображений, машинное обучение, нейронные сети, Спортивное программированиеНедавно на Kaggle закончилось соревнование iMaterialist Challenge (Furniture), задачей в котором было классифицировать изображения на 128 видов мебели и предметов быта (так называемая fine-grained classification, где классы очень близки друг к другу).
В этой статье я опишу подход, который принес нам с m0rtido третье место, но прежде, чем переходить к сути, предлагаю воспользоваться для решения этой задачи естественной нейросетью в голове и разделить стулья на фото ниже на три класса.
SmartMailHack. Решение 1-го места в задаче классификации логотипов
2018-05-06 в 19:29, admin, рубрики: cnn, data mining, deep learning, machine learning, python, классификация изображений, машинное обучение, хакатонДве недели назад закончился проходивший в офисе Mail.Ru Group хакатон для студентов SmartMailHack. На хакатоне предлагался выбор из трех задач; статья от победителей во второй задаче уже есть на хабре, я же хочу описать решение нашей команды, победившей в первой задаче. Все примеры кода будут на Python & Keras (популярный фреймворк для deep learning).