Рубрика «keras»

В современном мире искусственный интеллект и машинное обучение стремительно развиваются, меняя нашу повседневную жизнь и открывая новые горизонты в различных областях. Одной из ключевых технологий, лежащих в основе этих достижений, являются сверточные нейронные сети (Convolutional Neural Networks, CNN). Эти мощные алгоритмы позволяют эффективно обрабатывать и анализировать изображения, что находит применение в самых разных сферах: от медицинской диагностики до систем безопасности.

CNN подходит для классификации изображений, что делает её отличным выбором для задачи распознавания рукописных цифр.

CNN состоит из:

  1. Читать полностью »

Создаём сортировщик деталей Lego Technic, распознающий объекты в реальном времени - 1


Когда я проходил стажировку в Nullspace Robotics, мне повезло участвовать в проекте, нацеленном на расширение возможностей компании. Мы совместили системы обнаружения объектов и распознавания изображений для создания модели, классифицирующей детали конструктора Lego Technic в реальном времени.

В этой статье я расскажу о том, с какими сложностями столкнулся наш проект, и как мы довели его до успешного завершения.Читать полностью »

Как я использовал нейросеть для категоризации трехмерных тел - 1

Значимость темы машинного обучения (machine learning) сегодня очевидна. Это огромный домен знаний в Computer Science, которому в России, в частности, посвящают конференции уровня недавней AI JourneyЧитать полностью »

Не для кого не секрет, что капча является популярным средством, чтобы снизить нагрузку на сайт и предотвратить скачивание информации роботами. Сегодня, когда капча применяется практически на каждом сайте, рассмотрим кейс с ее обходом на сервисе "Прозрачный бизнес".

Что такое "Прозрачный бизнес"?

Сервис содержит комплексную информацию о финансовых и правовых параметрах юридических лиц (подробнее тутЧитать полностью »

Продолжение цикла публикаций статей про прогнозирование временных рядов. На повестке – перевод статьи How to Develop Multi-Step LSTM Time Series Forecasting Models for Power Usage.
Читать полностью »

Перевод руководства по рекуррентным нейросетям с сайта Tensorflow.org. В материале рассматриваются как встроенные возможности Keras/Tensorflow 2.0 по быстрому построению сеток, так и возможности кастомизации слоев и ячеек. Также рассматриваются случаи и ограничения использования ядра CuDNN позволяющего ускорить процесс обучения нейросети.

Рекуррентные нейронные сети (RNN) с Keras - 1
Читать полностью »

Если почитать обучение по автоэнкодерам на сайте keras.io, то один из первых посылов там звучит примерно так: на практике автоэнкодеры почти никогда не используются, но про них часто рассказывают в обучалках и народу заходит, поэтому мы решили написать свою обучалку про них:

Their main claim to fame comes from being featured in many introductory machine learning classes available online. As a result, a lot of newcomers to the field absolutely love autoencoders and can't get enough of them. This is the reason why this tutorial exists!

Тем не менее, одна из практических задач, для которых их вполне себе можно применять — поиск аномалий, и лично мне в рамках вечернего проекта потребовался именно он.

На просторах интернетов есть очень много туториалов по автоэнкодерам, нафига писать еще один? Ну, если честно, тому было несколько причин:

  • Сложилось ощущение, что на самом деле туториалов примерно 3 или 4, все остальные их переписывали своими словами;
  • Практически все — на многострадальном MNIST'е с картинками 28х28;
  • На мой скромный взгляд — они не вырабатывают интуицию о том, как это все должно работать, а просто предлагают повторить;
  • И самый главный фактор — лично у меня при замене MNIST'а на свой датасет — оно все тупо переставало работать.

Дальше описан мой путь, на котором набиваются шишки. Если взять любую из предложенных плоских (не сверточных) моделей из массы туториалов и втупую ее скопипастить — то ничего, как это ни удивительно, не работает. Цель статьи — разобраться почему и, как мне кажется, получить какое-то интуитивное понимание о том, как это все работает.

Я не специалист по машинному обучению и использую подходы, к которым привык в повседневной работе. Для опытных data scientists наверное вся эта статья будет дикой, а для начинающих, как мне кажется, может что-то новое и встретится.

Читать полностью »

Keras Functional API в TensorFlow - 1

В Keras есть два API для быстрого построения архитектур нейронных сетей Sequential и Functional. Если первый позволяет строить только последовательные архитектуры нейронных сетей, то с помощью Functional API можно задать нейронную сеть в виде произвольного направленного ациклического графа, что дает намного больше возможностей для построения сложных моделей. В материале перевод руководства, посвященного особенностям Functional API, с сайта TensorFlow.
Читать полностью »

image

Перед тобой снова задача детектирования объектов. Приоритет — скорость работы при приемлемой точности. Берешь архитектуру YOLOv3 и дообучаешь. Точность(mAp75) больше 0.95. Но скорость прогона всё еще низкая. Черт.

Сегодня обойдём стороной квантизацию. А под катом рассмотрим Model Pruning — обрезание избыточных частей сети для ускорения Inference без потери точности. Наглядно — откуда, сколько и как можно вырезать. Разберем, как сделать это вручную и где можно автоматизировать. В конце — репозиторий на keras.

Читать полностью »

Использование сверточной нейронной сети для игры в «Жизнь» (на Keras) - 1

Цель этой статьи — научить нейронную сеть играть в игру "Жизнь", не обучая ее правилам игры.

Привет! Представляю вашему вниманию перевод статьи "Using a Convolutional Neural Network to Play Conway's Game of Life with Keras" автора kylewbanks.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js