Какое-то время назад мы нашли свои старые материалы, по которым обучали первые потоки на наших курсах машинного обучения в Школе Данных и сравнили их с теперешними. Мы удивились, сколько всего мы добавили и поменяли за 5 лет обучения. Осознав, почему мы это сделали и как, на самом деле, поменялся подход к решению задач Data Science, мы решили написать вот эту публикацию.Читать полностью »
Рубрика «kaggle» - 2
Машинное обучение vs. аналитический подход
2019-07-08 в 12:32, admin, рубрики: big data, data mining, kaggle, sna, Алгоритмы, алгоритмы обработки данных, анализ данных, анализ социальных сетей, Блог компании Школа Данных, искусственный интеллект, математика, машинное обучение, нейронные сети, нейросети, рекомендательные системы, Чат-боты, школа данныхSNA Hackathon 2019 — итоги
2019-04-17 в 8:16, admin, рубрики: big data, data mining, kaggle, machine learning, snahackathon, Блог компании Одноклассники, машинное обучение1-го апреля завершился финал SNA Hackathon 2019, участники которого соревновались в сортировке ленты социальной сети с использованием современных технологий машинного обучения, компьютерного зрения, обработки тестов и рекомендательных систем. Жесткий онлайн отбор и двое суток напряженной работы над 160 гигабайтами данных не прошли даром :). Рассказываем о том, что помогло участникам прийти к успеху и о других интересных наблюдениях.
Резидентская программа Яндекса, или Как опытному бэкендеру стать ML-инженером
2019-04-03 в 8:00, admin, рубрики: kaggle, Блог компании Яндекс, идеи и реализация, Карьера в IT-индустрии, машинное обучение, научные программы, резидент, Учебный процесс в ITЯндекс открывает резидентскую программу по машинному обучению для опытных бэкенд-разработчиков. Если вы много писали на C++/Python и хотите применить эти знания в ML — то мы научим вас заниматься практическими исследованиями и выделим опытных кураторов. Вы поработаете над ключевыми сервисами Яндекса и получите навыки в таких областях, как линейные модели и градиентный бустинг, рекомендательные системы, нейросети для анализа изображений, текста и звука. Ещё вы узнаете, как правильно оценивать свои модели с помощью метрик в офлайне и онлайне.
Продолжительность программы — один год, в течение которого участники будут работать в управлении машинного интеллекта и исследований Яндекса, а также посещать лекции и семинары. Участие оплачивается и предполагает полную занятость: 40 часов в неделю, начиная с 1 июля этого года. Приём заявок уже открыт и продлится до 1 мая.
А теперь подробнее — о том, какую аудиторию мы ждём, каким будет рабочий процесс и в целом, как бэкенд-специалисту переключиться на карьеру в ML.
Quick Draw Doodle Recognition: как подружить R, C++ и нейросетки
2019-03-25 в 16:09, admin, рубрики: c++, deep learning, image classification, kaggle, keras, monetdb, R, rcpp, Администрирование баз данных, Блог компании Open Data Science, машинное обучение, обработка изображенийПривет!
Осенью прошлого года на Kaggle проходил конкурс по классификации нарисованных от руки картинок Quick Draw Doodle Recognition, в котором среди прочих поучаствовала команда R-щиков в составе Артема Клевцова, Филиппа Управителева и Андрея Огурцова. Подробно описывать соревнование не будем, это уже сделано в недавней публикации.
С фармом медалек в этот раз не сложилось, но было получено много ценного опыта, поэтому о ряде наиболее интересных и полезных на Кагле и в повседневной работе вещей хотелось бы рассказать сообществу. Среди рассмотренных тем: нелегкая жизнь без OpenCV, парсинг JSON-ов (на этих примерах рассматривается интеграции кода на С++ в скрипты или пакеты на R посредством Rcpp), параметризация скриптов и докеризация итогового решения. Весь код из сообщения в пригодном для запуска виде доступен в репозитории.
Содержание:
Kaggle: не можем ходить — будем бегать
2019-03-06 в 5:22, admin, рубрики: cnn, data mining, gru, kaggle, keras, LightGBM, LSTM, machine learning, RNN, scikit-learn, Блог компании Singularis, искусственный интеллект, машинное обучение, рекуррентная нейронная сеть, финансы в ITНасколько сложна тема машинного обучения? Если Вы неплохо математически подкованы, но объем знаний о машинном обучении стремится к нулю, как далеко Вы сможете зайти в серьезном конкурсе на платформе Kaggle?
Kaggle-подходы для CV в проде: внедрить нельзя выпилить
2019-02-20 в 11:25, admin, рубрики: kaggle, ods.ai, Блог компании Open Data Science, искусственный интеллект, Компьютерное зрение, машинное обучение, никто не читает теги, обработка изображений, управление проектами
Среди дата сайнтистов ведется немало холиваров, и один из них касается соревновательного машинного обучения. Действительно ли успехи на Kaggle показывают способности специалиста решать типичные рабочие задачи? Арсений arseny_info (R&D Team Lead @ WANNABY, Kaggle Master, далее в тексте A.) и Артур n01z3 (Head of Computer Vision @ X5 Retail Group, Kaggle Grandmaster, далее в тексте N.) отмасштабировали холивар на новый уровень: вместо очередного обсуждения в чате взяли микрофоны и устроили публичное обсуждение на митапе, по мотивам которого и родилась эта статья.
Читать полностью »
Распознавание рентгеновских снимков: precision = 0.84, recall = 0.96. А нужны ли нам еще врачи?
2019-01-21 в 13:43, admin, рубрики: big data, data mining, kaggle, sna, Алгоритмы, алгоритмы обработки данных, анализ данных, анализ социальных сетей, Блог компании Школа Данных, искусственный интеллект, математика, машинное обучение, нейронные сети, нейросети, рекомендательные системы, Чат-боты, школа данныхВ последнее время все чаще обсуждается применение AI в медицине. И, конечно, область медицины, которая прямо напрашивается для такого применения это областей диагностики.
Кажется, и раньше можно было применять экспертные системы и алгоритмы классификации к задачам постановки диагноза. Однако, есть одна область AI, которая добилась наибольших успехов в последние годы, а именно область распознавания изображений и сверточные нейронные сети. На некоторых тестах алгоритмы AI в распознавании картинок превзошли человека. Вот два примера: Large Scale Visual Recognition Challenge и German Traffic Sign Recognition Benchmark.
Соответственно, возникла идея применить AI к области распознавания изображений там, где и врачи занимаются распознаванием изображений, а именно к анализу снимков и, для начала, рентгеновских снимков.Читать полностью »
Анализ результатов 2018 Kaggle ML & DS Survey
2019-01-09 в 11:00, admin, рубрики: kaggle, machine learning, ods, python, visualization, Блог компании Open Data Science, визуализация данных, демография, Исследования и прогнозы в IT, машинное обучениеKaggle — известная платформа для проведения соревнований по машинному обучению на которой количество зарегистрированных пользователей перевалило за 2.5 миллиона. В соревнованиях участвуют тысячи data scientist из разных стран, и Kaggle стал интересоваться тем, что из себя представляет аудитория. В октябре 2018 года был организован уже второй опрос и на него ответило 23859 людей из 147 стран.
В опросе было несколько десятков вопросов на самые разные темы: пол и возраст, образование и сфера работы, опыт и навыки, используемые языки программирования и софт и многое другое.
Но Kaggle — не просто площадка для соревнований, там также можно публиковать исследования данных или решения соревнований (они называются кернелы и похожи на Jupyter Notebook), поэтому датасет с результатами опроса был выложен в открытый доступ, и было организовано соревнование на лучшее исследование этих данных. Я тоже принимал участие и пусть денежный приз не получил, но мой кернел занял шестое место по количеству голосов. Я хотел бы поделиться результатами моего анализа.
Данных довольно много и их можно рассматривать с разных сторон. Меня заинтересовали различия между людьми из разных стран, поэтому большая часть исследования будет сравнивать людей из России (поскольку мы тут живём), Америки (как самая продвинутая страна в плане DS), Индии (как бедная страна с большим количеством DS) и других стран.
Большая часть графиков и анализа взята из моего кернела (желающие могут там увидеть код на Python) но есть и новые идеи.
Роботизация может вести к диктатуре
2018-12-29 в 12:02, admin, рубрики: big data, data mining, kaggle, sna, Алгоритмы, алгоритмы обработки данных, анализ данных, анализ социальных сетей, Блог компании Школа Данных, искусственный интеллект, математика, машинное обучение, нейронные сети, нейросети, рекомендательные системы, Чат-боты, школа данныхПредыдущая статья на тему замены человека роботом получила большое количество комментариев. Получается, тема живая не только в наших головах.
Поскольку мы сами вносим вклад в роботизацию как в контексте обучения в нашей Школе, так и в контексте проектов, которые мы делаем, то невольно нам приходится задумываться на предмет того, куда в пределе этот процесс может вести и как избежать сопутствующих ему угроз.
В этой публикации мы решили отчасти ответить на комментарии из предыдущей статьи, отчасти немного дальше развить тему. Если кто-то не читал изначальную публикацию — предлагаем это сделать, а также комментарии к ней.
Итак, давайте временно не будем спорить о том, случится так, что роботы смогут заменить человека или нет. Не случится — ок. Но, вот если случится, то дальнейшее нам видится так:Читать полностью »
Что делать с людьми, которых заменят роботы?
2018-12-27 в 10:42, admin, рубрики: big data, data mining, kaggle, sna, Алгоритмы, алгоритмы обработки данных, анализ данных, анализ социальных сетей, Блог компании Школа Данных, искусственный интеллект, математика, машинное обучение, нейронные сети, нейросети, рекомендательные системы, Чат-боты, школа данныхВ этой предновогодней публикации мы решили немного порассуждать о будущем в мире роботов и о роли человека в нем.
Предсказывать будущее в наши дни стало абсолютным must have среди экспертов. Когда технологии меняют мир настолько стремительно, очень хочется заглянуть хотя бы на несколько лет вперед. Цели разные. Потребителям — пофантазировать, восхититься и/или ужаснуться, бизнесам — скорректировать планы, политикам — продумать меры по сохранению спокойствия в социуме на случай «большого технологического шухера».Читать полностью »