Рубрика «k-medoids»

Эта статья посвящена кластеризации, а точнее, моему недавно добавленному в CRAN пакету ClusterR. Детали и примеры ниже в большинстве своем основаны на пакете Vignette.

Кластерный анализ или кластеризация — задача группирования набора объектов таким образом, чтобы объекты внутри одной группы (называемой кластером) были более похожи (в том или ином смысле) друг на друга, чем на объекты в других группах (кластерах). Это одна из главных задач исследовательского анализа данных и стандартная техника статистического анализа, применяемая в разных сферах, в т.ч. машинном обучении, распознавании образов, анализе изображений, поиске информации, биоинформатике, сжатии данных, компьютерной графике.

Наиболее известные примеры алгоритмов кластеризации — кластеризация на основе связности (иерархическая кластеризация), кластеризация на основе центров (метод k-средних, метод k-медоидов), кластеризация на основе распределений (GMM — Gaussian mixture models — Гауссова смесь распределений) и кластеризация на основе плотности (DBSCAN — Density-based spatial clustering of applications with noise — пространственная кластеризация приложений с шумом на основе плотности, OPTICS — Ordering points to identify the clustering structure — упорядочивание точек для определения структуры кластеризации, и др.).

В первой части: гауссова смесь распределений (GMM), метод k-средних, метод k-средних в мини-группах.
Читать полностью »

Эта статья посвящена кластеризации, а точнее, моему недавно добавленному в CRAN пакету ClusterR. Детали и примеры ниже в большинстве своем основаны на пакете Vignette.

Кластерный анализ или кластеризация — задача группирования набора объектов таким образом, чтобы объекты внутри одной группы (называемой кластером) были более похожи (в том или ином смысле) друг на друга, чем на объекты в других группах (кластерах). Это одна из главных задач исследовательского анализа данных и стандартная техника статистического анализа, применяемая в разных сферах, в т.ч. машинном обучении, распознавании образов, анализе изображений, поиске информации, биоинформатике, сжатии данных, компьютерной графике.

Наиболее известные примеры алгоритмов кластеризации — кластеризация на основе связности (иерархическая кластеризация), кластеризация на основе центров (метод k-средних, метод k-медоидов), кластеризация на основе распределений (GMM — Gaussian mixture models — Гауссова смесь распределений) и кластеризация на основе плотности (DBSCAN — Density-based spatial clustering of applications with noise — пространственная кластеризация приложений с шумом на основе плотности, OPTICS — Ordering points to identify the clustering structure — упорядочивание точек для определения структуры кластеризации, и др.).
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js