Рубрика «искусственный интеллект» - 99

Аппаратное ускорение глубоких нейросетей: GPU, FPGA, ASIC, TPU, VPU, IPU, DPU, NPU, RPU, NNP и другие буквы - 1

14 мая, когда Трамп готовился спустить всех собак на Huawei, я мирно сидел в Шеньжене на Huawei STW 2019 — большой конференции на 1000 участников — в программе которой были доклады Филипа Вонга, вице-президента по исследованиям TSMC по перспективам не-фон-неймановских вычислительных архитектур, и Хенга Ляо, Huawei Fellow, Chief Scientist Huawei 2012 Lab, на тему разработки новой архитектуры тензорных процессоров и нейропроцессоров. TSMC, если знаете, делает нейроускорители для Apple и Huawei по технологии 7 nm (которой мало кто владеет), а Huawei по нейропроцессорам готова составить серьезную конкуренцию Google и NVIDIA.

Google в Китае забанен, поставить VPN на планшет я не удосужился, поэтому патриотично пользовался Яндексом для того, чтобы смотреть, какая ситуация у других производителей аналогичного железа, и что вообще происходит. В общем-то за ситуацией я следил, но только после этих докладов осознал, насколько масштабна готовящаяся в недрах компаний и тиши научных кабинетов революция.

Только в прошлом году в тему было вложено больше 3 миллиардов долларов. Google уже давно объявил нейросети стратегическим направлением, активно строит их аппаратную и программную поддержку. NVIDIA, почувствовав, что трон зашатался, вкладывает фантастические усилия в библиотеки ускорения нейросетей и новое железо. Intel в 2016 году потратил 0,8 миллиарда на покупку двух компаний, занимающихся аппаратным ускорением нейросетей. И это при том, что основные покупки еще не начались, а количество игроков перевалило за полсотни и быстро растет.

Аппаратное ускорение глубоких нейросетей: GPU, FPGA, ASIC, TPU, VPU, IPU, DPU, NPU, RPU, NNP и другие буквы - 2

TPU, VPU, IPU, DPU, NPU, RPU, NNP — что все это означает и кто победит? Попробуем разобраться. Кому интересно — велкам под кат!
Читать полностью »

Новый алгоритм, созданный учеными, позволяет создавать почти идеальные «говорящие головы» с реальными людьми - 1

Исследователи научились редактировать видеоролики, вкладывая в уста человека на видео любые слова и предложения. Технология обрабатывает ролик таким образом, что выглядит все это весьма естественно и органично, заметить подделку можно только в том случае, если подозревать редактирование.

Создала новый алгоритм объединенная команда исследователей из Стэнфорда, Института Макса Планка, Принстона и компании Adobe. Редактирование заключается лишь в создании текста, который должен произнести человек с ролика. Всю остальную работу выполняет нейросеть. Заметить подделку сложно потому, что мимика и паттерны движений «спикера» сохраняются, технология позволяет маскировать следы вмешательства.
Читать полностью »

Полный курс на русском языке можно найти по этой ссылке.
Оригинальный курс на английском доступен по этой ссылке.
Введение в свёрточные нейронные сети (Convolutional Neural Networks) - 1
Выход новых лекций запланирован каждые 2-3 дня.
Читать полностью »

Как мы модерируем объявления - 1

Каждый сервис, чьи пользователи могут создавать собственный контент (UGC — User-generated content), вынужден не только решать бизнес-задачи, но и наводить порядок в UGC. Плохая или некачественная модерация контента в итоге может уменьшить привлекательность сервиса для пользователей, вплоть до прекращения его работы.

Сегодня мы вам расскажем про синергию между Юлой и Одноклассниками, которая помогает нам эффективно модерировать объявления в Юле.

Синергия вообще штука очень полезная, а в современном мире, когда технологии и тренды меняются очень быстро, она может превратиться в палочку-выручалочку. Зачем тратить дефицитные ресурсы и время на изобретение того, что до тебя уже изобрели и довели до ума?

Так же подумали и мы, когда перед нами во весь рост встала задача модерации пользовательского контента — картинок, текста и ссылок. Наши пользователи каждый день загружают в Юлу миллионы единиц контента, и без автоматической обработки промодерировать все эти данные вручную вообще не реально.

Поэтому мы воспользовались уже готовой платформой модерации, которую к тому времени наши коллеги из Одноклассников допилили до состояния «почти совершенство».
Читать полностью »

Нейросеть NTechLab заняла второе место на конкурсе NIST по распознаванию действий на видео - 1
Примеры видеороликов из тестового набора

Российская компания NtechLab заняла второе место на конкурсе нейросетей ActEV: Activities in Extended Video среди алгоритмов, способных распознавать действия на видео. В конкурсе принимали участие 39 алгоритмов, в финальном этапе ActEV-PC Independent Evaluation остались семь участников.

Такие системы могут широко применяться в коммерческих системах. Например, это позволяет автоматизировать поиск неправильно припаркованных автомобилей, оставленных предметов, а также курящих в неположенных местах граждан — и оперативно оповещать об этих действиях полицию. Система автоматического распознавания действий для правоохранительных органов особенно эффективна в сочетании с обширной системой видеонаблюдения, которая работает в связке с системой распознавания лиц.
Читать полностью »

Amazon запускает доставку дронами. Как это будет работать - 1

Вчера Amazon впервые представила собственный дрон для доставки – на своей первой конференции Re:Mars в Лас-Вегасе. Это на самом деле уникальное устройство, доверху напичканное сенсорами и алгоритмами. К тому же, это дрон-трансформер. Он умеет лететь вертикально, как вертолет, во время подъема и приземления, и переключаться в более аэродинамичный «режим самолета», когда нужна скорость. И выглядит, и работает новый девайс как какая-то машина из далекого будущего.Читать полностью »

Команда МФТИ прошла в финал конкурса Amazon — Alexa Prize Socialbot Grand Challenge 3 - 1

Amazon опубликовала шорт-лист конкурса Alexa Prize Socialbot Grand Challenge 3. Из 375 заявок комитет Alexa Prize отобрал 10 финалистов, в том числе команду МФТИ. Каждая команда получит исследовательский грант в размере $250 000, доступ к набору данных Extended Topical Chat и поддержку от разработчиков Alexa.
Читать полностью »

В последнее время мы в группе распознавания компании ABBYY всё больше применяем нейронные сети в различных задачах. Очень хорошо они зарекомендовали себя в первую очередь для сложных видов письменности. В прошлых постах мы рассказывали о том, как мы используем нейронные сети для распознавания японской, китайской и корейской письменности.

image Пост про распознавания японских и китайских иероглифов
image Пост про распознавание корейских символов

В обоих случаях мы использовали нейронные сети с целью полной замены метода классификации отдельного символа. Во всех подходах фигурировало множество различных сетей, и в задачи некоторых из них входила необходимость адекватно работать на изображениях, которые не являются символами. Модель в этих ситуациях должна как-то сигнализировать о том, что перед нами не символ. Сегодня мы как раз расскажем о том, зачем это в принципе может быть нужно, и о подходах, с помощью которых можно добиться желаемого эффекта.

Мотивация

А в чём вообще проблема? Зачем нужно работать на изображениях, которые не являются отдельными символами? Казалось бы, можно разделить фрагмент строки на символы, классифицировать их все и собрать из этого результат, как, например, на картинке ниже.

Отличаем символы от мусора: как построить устойчивые нейросетевые модели в задачах OCR - 3

Да, конкретно в данном случае так действительно можно сделать. Но, увы, реальный мир устроен куда более сложно, и на практике при распознавании приходится иметь дело с геометрическими искажениями, смазом, пятнами кофе и прочими трудностями.
Читать полностью »

Вы пока не разбираетесь, почему ReLU лучше сигмоиды, чем отличается Rprop от RMSprop, чем нормализованный сигнал лучше ненормализованного и почему сигналы вообще стоит пробрасывать? И зачем нейронной сети нужен граф, и какую он совершил ошибку, что она распространяется обратно? У вас есть проект, в котором требуется компьютерное зрение, но вы хотите его реализовать при помощи OpenCV? Вы делаете межгалактического робота для борьбы с грязными тарелками, и хотите, чтобы он мог сам решать, отмывать или и так сойдет? Или вы видели предложения по зарплатам для специалистов ML на hh.ru и все еще под впечатлением?

Мы запускаем открытый курс «Нейронные сети и компьютерное зрение», который адресован тем, кто в этой области делает первые шаги. В чем преимущества нашего курса?

  • авторы курса знают, о чем говорят: это инженеры московского Центра искусственного интеллекта Samsung, Михаил Романов и Игорь Слинько;
  • есть как теория (с опциональными математическими задачами для улучшения понимания), так и практика на PyTorch
  • приступаем к практике сразу после освоения минимальных теоретических знаний.
  • есть котейки
  • и самое главное: лучшие студенты будут приглашены на собеседование в Samsung Research Russia!

Samsung открывает бесплатный онлайн-курс по нейросетям в задачах компьютерного зрения - 1
Читать полностью »

Rekko — персональные рекомендации в онлайн-кинотеатре Okko

Знакома ли вам ситуация, когда на выбор фильма вы тратите гигантское количество времени, сопоставимое со временем самого просмотра? Для пользователей онлайн-кинотеатров это частая проблема, а для самих кинотеатров — упущенная прибыль.

К счастью, у нас есть Rekko — система персональных рекомендаций, которая уже год успешно помогает пользователям Okko выбирать фильмы и сериалы из более чем десяти тысяч единиц контента. В статье я расскажу вам как она устроена с алгоритмической и технической точек зрения, как мы подходим к её разработке и как оцениваем результаты. Ну и про сами результаты годового A/B теста тоже расскажу.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js