Рубрика «искусственный интеллект» - 90

Привет! Представляю вашему вниманию перевод статьи «f5 Reasons AI Won’t Replace Humans… It Will Make Us Superhuman».

Многие говорят, что ИИ с немыслимой скоростью забирает у нас работу. Заменит ли искусственный интеллект людей и создаст ли он неизбежный мировой кризис и породит безработицу? Не думаю, ведь человечество умеет выживать и преуспевать в реальном мире … разве нет? Когда охота и собирательство были нашими единственными потребностями, развитие сельского хозяйства не ознаменовало конец света, а лишь стало одним из многих кирпичиков громоздкой башни человеческой эволюции. Мы адаптировались и развивались. Промышленная революция не привела к апокалиптическому росту безработицы. Напротив, люди создали больше рабочих мест и заново себя переосмыслили с помощью достижений технологий. Появление интернета, экономики и знаний не лишило нас работы. Напротив, каждое из этих нововведений сделало нас более продуктивными, и мы потеряли лишь несколько категорий труда. Технологии и инновации облегчают нашу жизнь и помогают нам лучше выполнять свою работу. Это как раз то, что ИИ приготовил для нас. Он сделает нас эффективнее, по сути, сверхлюдьми.Читать полностью »

Недавно я задался вопросом: связано ли как-то наше желание везде видеть золотое сечение с какими-то сугубо культурными вещами, или же в этом скрыта какая-то более глубокая закономерность, связанная с устройством нашего мозга? Чтобы разобраться в этом вопросе, я решил сделать несколько вещей:

  1. Сформулировать конкретную гипотезу относительно данной закономерности. Я решил, что лучше всего подойдёт предположение, что наш мозг использует систему счисления, основанную на разложении чисел на степени золотого сечения, так как некоторые её особенности очень близки работе примитивных нейросетей: дело в том, что степени золотого сечения более высокого порядка можно разложить бесконечным числом способов в суммы степеней менее высокого порядка и даже отрицательных степеней. Таким образом, более высокая степень как бы «возбуждается» от нескольких низших степеней, тем самым проявляя то самое сходство с нейросетью.
  2. Описать конкретный способ её проверки: я выбрал мат. моделирование эволюции мозга посредством случайных изменений в простейшей возможной нейросети — матрице линейного оператора.
  3. Составить критерии подтверждения гипотезы. Моим критерием было то, что система счисления, основанная на золотом сечении, реализуется на нейросетевом движке при тех же объёмах информации с меньшим числом ошибок, чем двоичная.

Так как речь идёт о программировании, опишу поподробнее второй и третий пункты.
Читать полностью »

image

Сотрудники MIT представили компьютерную модель, которая способна осознавать базовые физические законы на уровне ребенка. Данную модель возможно применить для создания более умного ИИ, либо с целью изучения психологии детского восприятия.

Модель получила название ADEPT. Она наблюдает за объектами, движущимися по сцене, а затем пытается предсказать их поведение на основе «интуитивно» понятых законов физики. При этом каждому из кадров наблюдения модель присваивает уровень «неожиданности» — и чем он выше, тем больше она «удивлена» происходящим. Таким образом, если поведение объекта категорически расходится с прогнозом (к примеру, он исчезает), то уровень неожиданности зашкаливает. Читать полностью »

image

Промышленная разработка программных систем требует большого внимания к отказоустойчивости конечного продукта, а также быстрого реагирования на отказы и сбои, если они все-таки случаются. Мониторинг, конечно же, помогает реагировать на отказы и сбои эффективнее и быстрее, но недостаточно. Во-первых, очень сложно уследить за большим количеством серверов – необходимо большое количество людей. Во-вторых, нужно хорошо понимать, как устроено приложение, чтобы прогнозировать его состояние. Следовательно, нужно много людей, хорошо понимающих разрабатываемые нами системы, их показатели и особенности. Предположим, даже если найти достаточное количество людей, желающих заниматься этим, требуется ещё немало времени, чтобы их обучить.

Что же делать? Здесь нам на помощь спешит искусственный интеллект. Речь в статье пойдет о предиктивном обслуживании (predictive maintenance). Этот подход активно набирает популярность. Написано большое количество статей, в том числе и на Хабре. Крупные компании вовсю используют такой подход для поддержки работоспособности своих серверов. Изучив большое количество статьей, мы решили попробовать применить этот подход. Что из этого вышло?

Читать полностью »

Вот бывает же в жизни такое. Сидишь себе не шалишь, никого не трогаешь, починяешь примус, а тут из этого примуса, из телевизора, да и вообще из каждого утюга, до тебя доносится: «нейронные сети, глубокое обучение, искусственный интеллект, цифровая экономика…».

Я — человек, а значит существо любопытное и алчное . В очередной раз не удержался и решил узнать на практике, что такое нейронные сети и с чем их едят.
Как говориться: «Хочешь научиться сам — начни учить других», на этом я перестану сыпать цитатами и перейдем к делу.

В данной статье мы вместе с вами попробуем, решить задачу, которая как оказалось будоражит не только мой ум.
Не имея достаточных фундаментальных знаний в области математики и программирования мы попробуем в реальном времени классифицировать изображения с веб-камеры, с помощью OpenCV и библиотеки машинного обучения для языка Python — PyTorch. По пути узнаем о некоторых моментах, которые могли бы быть полезны новичкам в применении нейронных сетей.

Вам интересно сможет ли наш классификатор отличить Arduino-совместимые контроллеры от малины? Тогда милости прошу под кат.

«Ты узнаешь ее из тысячи...» или классифицируем изображения с веб-камеры в реальном времени с помощью PyTorch - 1

Читать полностью »

Нейростики Intel NCS2, чипы Myriad X, решения сторонних производителей — компания Intel продвигает решения на базе Myriad X в самых различных вариантах.

Чем же так хороши эти ускорители? Во-первых, стоимостью одного FPS. Во-вторых, полной совместимостью с OpenVINO, где можно перенести существующие решения с CPU/GPU на стик или MyriadX без их доработки или дополнительной адаптации. Конечно же, адаптация это не особенность VPU, а, скорее, особенность OpenVINO, где каждая обученная сеть может работать на любой выбранной аппаратной платформе, будь то CPU, GPU, FPGA, VPU и выбор может быть сделан не до разработки, а после.
Читать полностью »

Технологические тренды 2020 года по версии телекоммуникационной компании Telenor - 1

Согласно информации агентства «РБК», Норвежская телекоммуникационная компания Telenor опубликовала свой список главных технологических трендов 2020 года. Подобный прогноз главных техно трендов на 2019 год, который опубликовала Telenor в конце 2018 года, показал свою состоятельность. Специалисты компании предвидели, что в 2019 году нас ждет мировое распространение deepfake, внедрение этических стандартов для искусственного интеллекта (ИИ), развертывание 5G, развитие индустриального IoT (интернета вещей), повсеместное использование голосовых помощников в домашних «умных» устройствах.

Что ждет нас в 2020 году.
Читать полностью »

Ли Седоль уходит из большого го из-за AlphaGo. Как это понимать? - 1

В понедельник 25 ноября южнокорейский мастер игры го 9 дана Ли Седоль рассказал в интервью, что он больше не будет участвовать в профессиональных соревнованиях. В качестве главной причины для завершения своей спортивной карьеры Седоль называет появление систем компьютерного го, которые играют лучше любого из людей. Даже если стать лучшим, всё равно будет нечто, что никогда не превзойти, говорит Седоль.

За пределами кругов поклонников го Ли Седоль получил известность благодаря играм против системы AlphaGo, разработанной компанией Google DeepMind. Го из-за своих особенностей долгое время не удавалось оптимизировать так, чтобы компьютеры могли обыгрывать людей. В 2016 году британская DeepMind провела матч из пяти партий, в котором один из лучших из людей — Седоль — проиграл до этого малоизвестной программе.

С той игры прошли три года. За это время улучшенная версия AlphaGo обыграла другого человека-чемпиона, DeepMind выпустила несколько научных работ по нейросети и рассказала о системе AlphaZero, а потом, кажется, потеряла любой интерес к проекту. Лишь сейчас Седоль решил оставить го. Есть ли для его решения другие причины?

О развитии систем компьютерного го и причинах поступка Ли Седоля мы поговорили с 7-кратным чемпионом Европы по го, действующим чемпионом России и членом президиума Российской федерации го Александром Динерштейном.
Читать полностью »

image

Итоги прошедшей недели на Хабре. В этом дайджесте — самые важные, интересные и громкие события, о которых мы говорили с 22 по 29 ноября. В Google разработали «объяснимый» ИИ, Stadia все никак не взлетит, а Translator Toolkit скоро закроется. Ученые, возможно, близки к очень надежным накопителям на основе сегнетоэлектрических конденсаторов, дисплеи Visionox можно свернуть в рулон, а в Сети нашли Elasticsearch-сервер с 1,2 млрд записей в открытом доступе. В США Дурова вызвали в суд, в России определили максимальную сумму штрафа за хранение данных юзеров за пределами страны, а Samsung обновит 30 моделей смартфонов до Android 10.Читать полностью »

ок.tech: Data Толк #4 новогодний выпуск - 1

Если вспомнить практику анализа данных 10 лет назад и сравнить её с тем, что есть сейчас, то станет очевидно —за декаду Data Science проделал гигантский путь. Компьютерное зрение, рекомендательные системы, большие данные, искусственный интеллект — в 2010 эти слова использовались в основном только передовыми ИТ-компаниями. Никто не мог представить, что всего лишь за 10 лет эти технологии изменят мир.

Каким бы был Netflix без рекомендательной системы? Кто будет подсказывать какие сериальчики смотреть по вечерам. Или Apple music, в котором вам ничего не рассказывают про новые альбомы в стиле христианский блэк-метал? Только подумайте сколько времени займет выдача кредита без применения скоринговой системы? Представьте себе YouTube, который ничего не показывает в разделе «Рекомендованные видео». Хотя… при таком сценарии я бы больше спал, а не смотрел смешные видосы про котов до 3-х часов ночи. Мир ждет, что водителей заменят беспилотные автомобили, хотя в 2010 это было научной фантастикой. Да чего там, Tinder подбирает пары на основе алгоритмов машинного обучения, люди женятся, у них рождаются дети, если призадуматься, то окажется, что фактически это дети искусственного интеллекта Sic.

Мы многим обязаны Data Science, поэтому 16 декабря в московском офисе Одноклассников соберемся и вместе с коллегами из OK, Сбербанка, VK и X5 Retail Group проведем ок.tech: Data Толк #4 новогодний выпуск. Поговорим про итоги года и десятилетия в области анализа и обработки данных. Какой была индустрия раньше, что она представляет сейчас и какие сюрпризы нас ждут в будущем, когда Илон Маск заменит людей огромными человекоподобными роботами. Ответы на все эти вопросы вы получите на нашем мероприятии.

Приходите! Будет полезно, интересно и весело!
Зарегистрироваться на мероприятие.

Под катом вас ждут описания докладов и расписание.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js