Рубрика «искусственный интеллект» - 86

XLNet против BERT - 1

В конце июня коллектив из Carnegie Mellon University показал нам XLNet, сразу выложив публикацию, код и готовую модель (XLNet-Large, Cased: 24-layer, 1024-hidden, 16-heads). Это предобученная модель для решения разных задач обработки естественного языка.

В публикации они сразу же обозначили сравнение своей модели с гугловым BERT-ом. Они пишут, что XLNet превосходит BERT в большом количестве задач. И показывает в 18 задачах state-of-the-art результаты.
Читать полностью »

Когда человек учится играть в гольф, большую часть времени он обычно проводит за постановкой базового удара. К другим ударам он подходит потом, постепенно, изучая те или иные хитрости, основываясь на базовом ударе и развивая его. Сходным образом мы пока что фокусировались на понимании алгоритма обратного распространения. Это наш «базовый удар», основа для обучения для большей части работы с нейросетями (НС). В этой главе я расскажу о наборе техник, которые можно использовать для улучшения нашей простейшей реализации обратного распространения, и улучшить способ обучения НС.

Среди техник, которым мы научимся в этой главе: лучший вариант на роль функции стоимости, а именно функция стоимости с перекрёстной энтропией; четыре т.н. метода регуляризации (регуляризации L1 и L2, исключение нейронов [dropout], искусственное расширение обучающих данных), улучшающих обобщаемость наших НС за пределы обучающих данных; лучший метод инициализации весов сети; набор эвристических методов, помогающих выбирать хорошие гиперпараметры для сети. Я также рассмотрю и несколько других техник, чуть более поверхностно. Эти обсуждения по большей части не зависят друг от друга, поэтому их можно по желанию перепрыгивать. Мы также реализуем множество технологий в рабочем коде и используем их для улучшения результатов, полученных для задачи классификации рукописных цифр, изученной в главе 1.
Читать полностью »

Очередной дайджест для мобильных разработчиков — в нем мобильная экстрасенсорика, новый порос Developer Economics, знакомство с HealthKit, онлайн-квест для разработчиков, Bixby Marketplace и много других интересных материалов.

Дайджест интересных материалов для мобильного разработчика #305 (1 — 7 июля) - 1Читать полностью »

Хабр, привет.

Отфильтровав большое количество статей, конференций и подписок — собрал для вас все наиболее значимые гайды, статьи и лайфхаки из мира машинного обучения и искусственного интеллекта. Всем приятного чтения!

1. Проекты искусственного интеллекта, с которыми можно поиграться уже сегодня. Что вы знаете про искусственный интеллект и машинное обучение? Современный тренд или потенциально мощная сила, способная убивать людей? Эти модные понятия всё чаще на слуху, но далеко не все знают, что же это на самом деле. Пришло время изучить эти технологии с помощью простого и интересного подхода — попробовать искусственный интеллект и нейросети самостоятельно на практике.

image

Подробнее

2. Изучение ИИ, если ты ничего не понимаешь в математике. Может быть, вы хотели бы копать глубже и запустить программу распознавания изображений в TensorFlow или Theano? Возможно, вы офигительный разработчик или системный архитектор и вы очень хорошо знаете компьютеры, но есть только одна маленькая проблема: Вы не понимаете в математике.

image

Подробнее

3. Как построить систему модерации сообщений. Системы автоматической модерации обычно встроены в веб-сервисы и приложения, где должно обрабатываться большое количество пользовательских сообщений. Такие системы могут снизить затраты на ручную модерацию и ускорить модерацию, обрабатывая все пользовательские сообщения в режиме реального времени. В этой статье будет обсуждаться разработка системы автоматической модерации с использованием алгоритмов машинного обучения.

image

Подробнее Читать полностью »

image

Древние египтяне знали толк в вивисекции и могли на ощупь отличить печень от почки. Пеленая с утра до вечера мумии и занимаясь врачеванием (от трепанации до удаления опухолей), поневоле научишься разбираться в анатомии.

Богатство анатомических подробностей с лихвой компенсировалось неразберихой с пониманием функции органов. Жрецы, врачи и простой люд смело помещали разум в сердце, а мозгу отводили роль производителя слизи для носа.

Спустя 4 тыс. лет трудно позволить себе смеяться над феллахами и фараонами — наши компьютеры и алгоритмы сбора данных выглядят круче, чем папирусные свитки, а мозг все так же загадочно производит не пойми что.

Вот и в данной статье предполагалось рассказать о том, что алгоритмы распознавания эмоций достигли скорости зеркальных нейронов в интерпретации сигналов собеседника, как вдруг выяснилось, что нервные клетки стали не тем, чем кажутся.
Читать полностью »

Хабр, привет.

Отфильтровав большое количество источников и подписок — собрал для вас все наиболее значимые новости из мира машинного обучения и искусственного интеллекта за июнь. Всем приятного чтения!

1. Команда исследователей из Карнеги-Меллона сделала прорыв в области неинвазивного управления роботизированными устройствами.

Используя неинвазивный интерфейс мозг-компьютер, они разработали первую в мире успешную роботизированную руку, которая управляется с помощью мыслей и без хирургического (!) вмешательства. Технология продемонстрировала способность непрерывно отслеживать и следовать за курсором компьютера.

image

Читать подробнее

2. Facebook AI опубликовали работу, в которой проверяли нейросети на способность следовать принципу взаимной исключительности при принятии решений. И выяснили, чем отличается процесс принятия решений у нейросети и ребенка.

image

Читать подробнее

3. Waymo публикует данные для обучения автопилотных автомобилей. Данные включают в себя 3,000 видеозаписей вождения, которые в сумме длятся 16.7 часов, 600,000 фреймов, около 25 миллионов 3D границ объектов и 22 миллионов 2D границ объектов. Сенсоры на автомобилях, которые собирали данные, включали в себя 5 LiDARs, 5 камер и радары, количество которых не разглашается. Компания заявила, что им удалось точнее синхронизировать LiDAR и записи камер, чем в открытых данных (KITTI, NuScenes).

image

Читать подробнееЧитать полностью »

Инженер Amazon создал блокирующее устройство с ИИ, которое не пускает в дом кота с уличной добычей - 1

Инженер Amazon Бен Хэмм разработал умный блокиратор, который не дает его коту по кличке Метрик приносить внутрь дома пойманных охотничьими лапками и зубками и по факту уже мертвых птиц и крыс.
Читать полностью »

Штат Виргиния вводит уголовное наказание за распространение Deepfake-фотографий - 1

Начиная с первого июля в штате Виргиния вводятся изменения в закон о распространении видеоматериалов интимного содержания.
Читать полностью »

Data Science Digest (July 2019) - 1

Приветствую всех!

Лето в полном разгаре, и если вы планируете быть в Одессе 5-го июля, приглашаю вас на ODS митап и дата-бар, который организовывает одесская ODS.ai команда. Напоминаю, что у дайджеста есть свой Telegram-канал и страницы в соцсетях (Facebook, Twitter, LinkedIn, Medium), где я ежедневно публикую ссылки на полезные материалы. Присоединяйтесь!

А пока предлагаю свежую подборку материалов под катом.
Читать полностью »

Привет! Весной 2019 года прошел очередной Think Developers Workshop, на котором все желающие могли собрать картонного робота TJBota под управлением IBM Watson Services. Под катом находится подробная инструкция, из чего и как собрать такого робота, полезные ссылки и простейшие рецепты, демонстрирующие некоторые когнитивные возможности сервисов Watson, а также небольшой анонс двух июльских семинаров о Watson Services в московском офисе IBM.

image

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js