В последние годы нейронный машинный перевод (НМП) с использованием моделей «трансформер» добился необычайных успехов. НМП на основе глубоких нейросетей обычно обучаются с начала до конца на очень объёмных параллельных корпусах текстов (текстовых парах) исключительно на основе самих данных, без необходимости назначать точные правила языка.
Несмотря на все успехи, НМП-модели могут проявлять чувствительность к небольшим изменениям входных данных, что может проявляться в виде различных ошибок – недоперевод, переперевод, неправильный перевод. К примеру, следующее немецкое предложение качественная НМП-модель «трансформер» переведёт правильно.
“Der Sprecher des Untersuchungsausschusses hat angekündigt, vor Gericht zu ziehen, falls sich die geladenen Zeugen weiterhin weigern sollten, eine Aussage zu machen.”
(Машинный перевод: “The spokesman of the Committee of Inquiry has announced that if the witnesses summoned continue to refuse to testify, he will be brought to court.”)
Перевод: представитель следственного комитета объявил, что если приглашённые свидетели будут и дальше отказываться давать показания, его привлекут к ответственности.
Читать полностью »