Рубрика «искусственный интеллект» - 67

«Скайнет» у станка: есть ли будущее у фабрик без рабочих? - 1

От Маркса и до Маска, то есть уже более 200 лет, люди мечтают о фабриках, которые работают без людей. Казалось бы, три промышленные революции вплотную приблизили нас к внедрению полностью автоматизированных заводов. Однако история таких производств не всегда счастливая — в попытках создать lights out factory терпели крах визионеры уровня Стива Джобса и Илона Маска, примеры действующих «бесчеловечных» фабрик единичны, а некоторые лидеры индустрии вроде Toyota вовсе заменяют машины людьми. Рассказываем, станут ли роботы «могильщиками» пролетариата, чего не хватает для тотальной автоматизации и какие есть компромиссные решения.
Читать полностью »

Исследовательская работа в области машинного обучения постепенно покидает пределы университетских лабораторий и из научной дисциплины становится прикладной. Тем не менее, все еще сложно находить актуальные статьи, которые написаны на понятном языке и без миллиарда сносок.

Этот пост содержит список англоязычных материалов за январь, которые написаны без лишнего академизма. В них вы найдете примеры кода и ссылки на непустые репозитории. Упомянутые технологии лежат в открытом доступе и не требуют сверхмощного железа для тестирования.
Читать полностью »

Пролог

По сети сейчас гуляет видео — как автопилот Теслы видит дорогу.
У меня давно чесались руки транслировать видео, обогащенное детектором, да и в реальном времени.

Видео с облачным детектором объектов на Raspberry Pi - 1

Проблема в том, что транслировать видео я хочу с Raspberry, а производительность нейросетевого детектора на ней оставляет желать лучшего.
Читать полностью »

Привет! Представляю вашему внимаю перевод статьи из журнала APC.

Машинное обучение и интеллектуальный анализ данных – это практические разработки ИИ, благодаря которым появляются приложения различных тематик, начиная от воздухоплавания и заканчивая зоологией. Эти процессы чаще всего выполняются в облаке, на ПК или ноутбуке, гораздо реже – в смартфоне.

Однако недавно в Google Play появилось новое бесплатное приложение под названием «DataLearner», с помощью которого можно добывать данные. Оно не требует внешних ресурсов и доступа с полномочиями суперпользователя.

Вычислительные ресурсы смартфонов

Многие ошибочно полагают, что для машинного обучения и добычи данных требуется много ресурсов облачной вычислительной системы или по меньшей мере мощный компьютер. Однако в конечном счёте всё сводится к размеру анализируемых данных и типу машинного обучения, которое вы хотите применить.

У компьютерного обучения есть свои уровни сложности. Если представить, что такая недавно появившаяся техника глубокого обучения, как свёрточная нейросеть (CNN) – это автомобиль с высокой удельной мощностью, то другие техники, например, дерево поиска решений и многие прочие «лесные» методы обучения – это горячие «хэтчбеки». Они показывают отличные результаты, быстры и легки даже при ограниченных вычислительных возможностях CPU.
Читать полностью »

image

Компания DeepL сообщила о том, что она запускает новую систему перевода при помощи искусственного интеллекта, которая дает гораздо более качественный результат. Ее можно бесплатно протестировать.

DeepL Переводчик вышел в 2017 году. Как отметили в компании, сейчас сервис используют более полумиллиарда человек. Версия DeepL Translator для Windows и Mac вышла в 2019 году. Сервис подписки DeepL Pro доступен для частных лиц, команд и разработчиков, а тарифные планы начинаются с €5,99.Читать полностью »

image

В столице намерены ввести экспериментальный правовой режим, который предназначен для тестирования искусственного интеллекта, подтвердил источник из московского правительства. Старт эксперимента запланирован на 1 июля, он продлится пять лет.

В нем смогут принять участие компании из специального реестра — юрлица или индивидуальные предприниматели, зарегистрированные в Москве. Компании должны участвовать в разработке или обороте технологий искусственного интеллекта, а также товаров и услуг на его основе. Читать полностью »

Как NLP-технологии ABBYY научились мониторить новости и управлять рисками - 1Круг задач, которые можно решить с помощью технологий ABBYY, пополнился еще одной интересной возможностью. Мы обучили свой движок работе банковского андеррайтера – человека, который из гигантского потока новостей вылавливает события о контрагентах и оценивает риски.

Сейчас такие системы на базе технологий ABBYY используют уже несколько крупных российских банков. Мы хотим рассказать о нюансах внедрения этого решения – довольно нетривиальных и неожиданных вызовах, с которыми столкнулись наши онтоинженеры.
Читать полностью »

Всем привет!

Вступление

Меня зовут Алексей Клоков, я хочу рассказать о запуске классного курса по обработке естественного языка (Natural Language Processing), который очередной раз запускают физтехи из проекта DeepPavlov – открытой библиотеки для разговорного искусственного интеллекта, которую разрабатывают в лаборатории нейронных систем и глубокого обучения МФТИ. Благодарю их и Moryshka за разрешение осветить эту тему на Хабре в нашем ods-блоге. Итак, поехали!

Читать полностью »

Туториал по Uplift моделированию. Часть 2 - 1

В первой части мы познакомились с uplift моделированием и узнали, что метод позволяет выбирать оптимальную стратегию коммуникации с клиентом, а также разобрали особенности сбора данных для обучения модели и несколько базовых алгоритмов. Однако эти подходы не позволяли оптимизировать uplift напрямую. Поэтому в этой части разберем более сложные, но не менее интересные подходы.
Читать полностью »

Обучение и оценка модели с Keras - 1

Это руководство охватывает обучение, оценку и прогнозирование (выводы) моделей в TensorFlow 2.0 в двух общих ситуациях:

  • При использовании встроенных API для обучения и валидации (таких как model.fit(), model.evaluate(), model.predict()). Этому посвящен раздел «Использование встроенных циклов обучения и оценки»
  • При написании кастомных циклов с нуля с использованием eager execution и объекта GradientTape. Эти вопросы рассматриваются в разделе «Написание собственных циклов обучения и оценки с нуля».

В целом, независимо от того, используете ли вы встроенные циклы или пишете свои собственные, обучение и оценка моделей работает строго одинаково для всех видов моделей Keras: Sequential моделей, созданных с помощью Functional API, и написанных с нуля с использованием субклассирования.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js