Рубрика «искусственный интеллект» - 64

Какой стартап мне запустить завтра? - 1
«Космические корабли бороздят просторы Вселенной» — Armada by tkdrobert

Меня регулярно спрашивают: «вот ты о стартапах пишешь, но их повторять уже поздно, а что сейчас запускать надо, где новый Facebook?» Если бы я знал точный ответ, то никому бы не сказал, а сам сделал, но направление поисков достаточно прозрачно, о нем можно говорить открыто.

Всё уже изобретено до нас

Все гиперуспешные стартапы основаны на очень простых идеях. Google вырос за счет того, что учитывал в ранжировании ссылки. Booking.com в едином интерфейсе показывает все отели мира. Tinder позволяет предложить знакомство одним свайпом. Uber — это заказ такси в мобильном приложении. Сейчас в этих компаниях работают десятки тысяч сотрудников, они каждый день усложняют продукт и добавляют новые сервисы, но тогда, на старте, всё было очень просто.
Читать полностью »

ИИ, пытающийся избежать проблем, научился сложному поведению - 1

В обучении с подкреплением (Reinforcement Learning) часто используется любопытство в качестве мотивации для ИИ. Заставляющее его искать новые ощущения и исследовать окружающий мир. Но жизнь полна неприятных сюрпризов. Можно упасть с обрыва и с точки зрения любопытства это всегда будут очень новые и интересные ощущения. Но явно не то, к чему надо стремиться.

Разработчики из Berkeley перевернули задачу для виртуального агента с ног на голову: главной мотивирующей силой сделали не любопытство, а наоборот — стремление всеми силами избегать любой новизны. Но "ничего не делать" оказалось сложнее, чем кажется. Будучи помещенным в постоянно меняющийся окружающий мир, ИИ пришлось обучиться сложному поведению, чтобы избегать новых ощущений.

Читать полностью »

Deep Fake Science, кризис воспроизводимости и откуда берутся пустые репозитории - 1
Я мирно сидел на семинаре, слушал доклад студента о статье с прошлого CVPR и параллельно гуглил тему.
— К достоинствам статьи можно отнести наличие исходного кода….
Пришлось вмешаться:
— Наличие чего, простите?
— Э-э-э… Исходного кода…
— Вы его смотрели? 
— Нет, но в статье указано… 
(мать-мать-мать… привычно отозвалось эхо)
ㅡ Вы ходили по ссылке?
В статье, действительно, предельно обнадеживающе написано: “The code and model are publicly available on the project page …/github.io/...”, — однако в коммите двухлетней давности по ссылке значится вдохновляющее «Код и модель скоро выложим»‎:
Deep Fake Science, кризис воспроизводимости и откуда берутся пустые репозитории - 2Ищите и обрящете, стучите и откроется… Может быть… А может быть и нет. Я бы, исходя из печального опыта, ставил на второе, поскольку ситуация в последнее время повторяется ну уж о-о-очень часто. Даже на CVPR. И это только часть проблемы! Исходники могут быть доступны, но, к примеру, только модель, без скриптов обучения. А могут быть и скрипты обучения, но за несколько месяцев с письмами к авторам не получается получить такой же результат. Или за год на другом датасете с регулярными скайп-звонками автору в США не удается воспроизвести его результат, полученный в наиболее известной лаборатории в отрасли по этой теме… Трындец какой-то.

И, судя по всему, мы пока видим лишь цветочки. В ближайшее время ситуация кардинально ухудшится. 

Кому интересно, что стало со студентом куда катится научный мир, в том числе по «вине»‎ глубокого обучения, добро пожаловать под кат!
Читать полностью »

Последние несколько лет я занимался проектированием и изготовлением машины, которая сможет распознавать и сортировать детали LEGO. Важнейшая часть машины — это Capture Unit, небольшое, почти полностью закрытое отделение, в котором есть конвейерная лента, освещение и камера.

Высокоскоростное машинное зрение в универсальном устройстве для сортировки деталей LEGO - 1

Освещение вы увидите чуть ниже.

Камера делает фотографии поступающих по конвейеру деталей LEGO, а затем передаёт изображения по беспроводному каналу на сервер, выполняющий алгоритм искусственного интеллекта для распознавания детали среди тысяч возможных элементов LEGO. Подробнее об ИИ-алгоритме я расскажу в будущих статьях, а эта статья будет посвящена обработке, которая выполняется между «сырым» выводом видео камеры и входом в нейросеть.

Основная проблема, которую мне нужно было решить — это преобразование видеопотока с конвейера в отдельные изображения деталей, которые бы могла использовать нейросеть.
Читать полностью »

Доброго времени суток. Представляю Вашему вниманию перевод статьи:«Artificial intelligence X human brain complexity» автора Andre Lisboa.

  • Будут ли технологические достижения в области машинного обучения и искусственного интеллекта представлять серьезную угрозу для работы переводчиков?
  • Будут ли лингвисты-переводчики заменены компьютерами?
  • Как переводчики могут адаптироваться к этим изменениям?
  • Достигнет ли компьютерный перевод 100% точности в течение следующего десятилетия?

Читать полностью »

Мы часто рассказываем о технологиях и библиотеках, которые зародились и сформировались в Яндексе. На самом деле мы ничуть не реже применяем и развиваем сторонние решения.

Сегодня я расскажу сообществу Хабра об одном из таких примеров. Вы узнаете, зачем мы научили нейросеть BERT находить опечатки в заголовках новостей, а не воспользовались готовой моделью, почему нельзя взять и запустить BERT на нескольких видеокартах и как мы использовали ключевую особенность этой технологии — механизм attention.

Как Яндекс научил искусственный интеллект находить ошибки в новостях - 1

Читать полностью »

Как сделать из нейросети журналиста, или «Секреты сокращения текста на Хабре без лишних слов» - 1Только не удивляйтесь, но второй заголовок к этому посту сгенерировала нейросеть, а точнее алгоритм саммаризации. А что такое саммаризация?

Это одна из ключевых и классических задач Natural Language Processing (NLP). Она заключается в создании алгоритма, который принимает на вход текст и на выходе выдаёт его сокращённую версию. Причем в ней сохраняется корректная структура (соответствующая нормам языка) и правильно передается основная мысль текста.

Такие алгоритмы широко используются в индустрии. Например, они полезны для поисковых движков: с помощью сокращения текста можно легко понять, коррелирует ли основная мысль сайта или документа с поисковым запросом. Их применяют для поиска релевантной информации в большом потоке медиаданных и для отсеивания информационного мусора. Сокращение текста помогает в финансовых исследованиях, при анализе юридических договоров, аннотировании научных работ и многом другом. Кстати, алгоритм саммаризации сгенерировал и все подзаголовки для этого поста.

К моему удивлению, на Хабре оказалось совсем немного статей о саммаризации, поэтому я решил поделиться своими исследованиями и результатами в этом направлении. В этом году я участвовал в соревновательной дорожке на конференции «Диалог» и ставил эксперименты над генераторами заголовков для новостных заметок и для стихов с помощью нейронных сетей. В этом посте я вначале вкратце пробегусь по теоретической части саммаризации, а затем приведу примеры с генерацией заголовков, расскажу, какие трудности возникают у моделей при сокращении текста и как можно эти модели улучшить, чтобы добиться выдачи более качественных заголовков.
Читать полностью »

CIMON-2: (не)судный день, или как IBM Watson забрался выше облаков - 1

CIMON – Crew Interactive Mobile CompanioN (далее «Саймон») – научная разработка аэрокосмического агентства Airbus и IBM, спонсированная германским центром авиации и космонавтики DLR. В прошлом году его впервые испытали «в бою» на МКС, а в этом месяце начали испытание второй версии помощника. Так как нам интересно все, что связано с высокотехнологичными и прорывными коммуникациями – например, мы уже писал про работу с IBM Watson – то мы не смогли пройти мимо этой новости и подготовили перевод-компиляцию из нескольких зарубежных материалов, чтобы понять самим и сообщить вам – зачем астронавтам условная Алиса/Алекса/{you name it}? Под катом вас ждет хронология событий, цитаты сопричастных и небольшой вывод. Приятного чтения!
Читать полностью »

Привет! Отфильтровав для вас большое количество источников и подписок, сегодня собрал все наиболее значимые новости из мира будущего, машинного обучения, роботов и искусственного интеллекта за ноябрь. Не забудьте поделиться с коллегами или просто с теми, кому интересны такие новости.

Для тех, кто не читал дайджест за октябрь, можете прочесть его здесь.

Итак, а теперь дайджест за ноябрь:

1. MIT разработал новый тип робота, который может расти как растение когда ему требуется дополнительная досягаемость.

image Читать полностью »

image

Nvidia создала AI-систему DIB-R (differentiable interpolation-based renderer), которая построена на основе ML-фреймворка PyTorch. Система способна преобразовывать двухмерные изображения в трехмерные объекты.

DIB-R обрабатывает картинку, а затем преобразует ее в высокоточную 3D-модель. Учитываются формы, текстура, цвета и освещение объекта. При этом задействована архитектура кодера-декодера, типа нейронной сети, которая преобразует входные данные в вектор, используемый для прогнозирования конкретной информации.

Вся работа занимает менее чем 100 миллисекунд. Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js