Рубрика «искусственный интеллект» - 51

Перевод статьи A Recipe for Training Neural Networks от имени автора (Andrej Karpathy). С некоторыми дополнительными ссылками.

Также доступна версия на украинском языке в личном блоге: Рецепт навчання нейрнонних мереж.

Рецепт обучения нейросетей - 1

Несколько недель назад я опубликовалЧитать полностью »

AI на минималках 2: Генератор стихов на Prolog

Мемная картинка

На картинке — четверостишье, сгенерированное моей программой.

Оказывается "стихи" писать легко, нужно только знать несколько необходимых ингредиентов: размер, ритм, рифма. "Стихи" в кавычках, потому что в настоящем стихосложении, как и в любом другом искусстве, незыблемых законов нет. Однако в классике очень много правил, при соблюдении которых получается писать неплохие стихи, даже если вы никогда раньше этого не делали. Причём эти правила довольно просто программируются: "в строке должно быть равно N слогов", "нечётные строки должны рифмоваться", "ударные и безударные слоги в строке должны идти в определённом порядке" и т.д. Перечислив все правила, я свёл задачу генерации стихов к простому комбинаторному поиску. Язык Prolog как раз и предназначен для таких задач — описании правил и генерации объектов, выполняющих эти правила.

Кто хочет научится писать стихи и познакомиться с Prolog, прошу под кат.

Читать полностью »

Как машинное обучение позволило Dropbox экономить ежегодно 1,7 миллиона долларов - 1

Недавно благодаря предсказательной мощи машинного обучения (machine learning, ML) мы обеспечили экономию 1,7 миллионов долларов в год на инфраструктурных тратах, оптимизировав процесс генерации и кэширования превью документов Dropbox. Машинное обучение и раньше применялось в Dropbox для таких хорошо известных функций, как поиск, рекомендации файлов и папок, а также OCR при сканировании документов. Хоть и не все сферы применения ML непосредственно видны пользователю, они всё равно изнутри влияют на развитие бизнеса.

Что такое превью?

Функция Dropbox Previews позволяет пользователям просматривать файл без скачивания контента. В дополнение к превью-миниатюрам Dropbox имеет интерактивную поверхность Previews с возможностью обмена между пользователями и совместной работы, в том числе использования комментарии и тегирования других пользователей.
Читать полностью »

Исполнительный директор центра искусственного интеллекта МТС Аркадий Сандлер ушел из компании. Это может быть связано с тем, что руководство недовольно отсутствием готовой к продажам умной колонки с голосовым помощником. Её разработку курировал Сандлер.
В июне колонки раздали для тестирования нескольким тысячам пользователей, сейчас несколько десятков можно найти на Avito по цене от 2,5 до 5 тысяч рублей. В большинстве объявлений указывается, Читать полностью »

Работать с Data Science в Jupyter, конечно, очень приятно, но если вы хотите пойти дальше и развернуть свой проект или модель на облачном сервере, то здесь есть много отличных решений — с помощью Flask, Django или Streamlit. Хотя облачные решения по-прежнему самые популярные, часто хочется создать быстрое приложение с графическим интерфейсом. Например:

  • Модель ML тестируется на различных наборах данных. Вы можете перетащить файлы CSV в модель и отрисовать кривую AUS/ROC. Здесь GUI проявит себя прекрасно, правда?
  • Построить случайную переменную или статистическое распределение в заданном диапазоне и динамически управлять параметрами с помощью графического интерфейса.
  • Быстро запустить некоторые задачи обработки или предварительной обработки данных в наборе с помощью GUI вместо того, чтобы писать кучу кода.

В этой статье мы покажем, как создать такой графический интерфейс, потратив минимум усилий на изучение библиотеки Python.

Как сделать Data Science приложение для Windows (и не только) с графическим интерфейсом с помощью PySimpleGUI - 1


Читать полностью »

Взлёт искусственного интеллекта привёл к популярности платформ машинного обучения MLaaS. Если ваша компания не собирается строить фреймворк и развёртывать свои собственные модели, есть шанс, что она использует некоторые платформы MLaaS, например H2O или KNIME. Многие исследователи данных, которые хотят сэкономить время, пользуются этими инструментами, чтобы быстро прототипировать и тестировать модели, а позже решают, будут ли их модели работать дальше. 

Но не бойтесь всей этой инфраструктуры; чтобы понять эту статью, достаточно минимума знаний языка Python и фреймворка Django.  Специально к старту нового потока курса по машинному обучению в этом посте покажем, как быстро создать собственную платформу ML, способную запускать самые популярные алгоритмы на лету.

Разрабатываем и развёртываем собственную платформу ИИ с Python и Django - 1


Портрет Орнеллы Мути Джозефа Айерле (фрагмент), рассчитанный с помощью технологии искусственного интеллекта.
Читать полностью »

Итак, все фотографии разложены по папкам и находить фотографии Новых годов или дней рождения стало быстро и удобно. Фотографии из отпусков тоже можно найти относительно быстро, но хотелось большего. А именно, искать по людям и не просто по людям, а по набору людей, например, найти все совместные фотографии детей или фотографии с бабушкой и т.д.

Поэтому я решил немного углубиться в так называемый Face Recognition.

Миллион домашних фотографий: лица, лица, лица - 1
Читать полностью »

Некоторое время назад я писал про «Интернациональное программирование на естественных языках», в которой попытался представить достойную цель для абстрактного язык программирования, попробовав примерить на него роль связующего звена между миром программистов с компьютерами и не программистов.

Но в результате оказалось, что это не нужно в принципе, т.к. «не программистам» просто не требуется учиться писать программы. А если иногда такое желание и возникает, то вполне хватает обычных формализованных языков программирования, которых уже сейчас насчитывается наверно более десяти тысяч.

И пользователи, как программисты, так и не программисты, просто хотят решать возникающие перед ними задачи. И хотя задачи бывают совершенно разные, но если способ (алгоритм) её решения известен, то выбрать язык для её решения не составит никакого труда.

За исключением одного класса задач. Задач, решение которых нельзя описать в виде алгоритма. Но можно указать некие критерии, которым должно удовлетворять искомое решение. Я имею ввиду логические языки программирования и Пролог, как самый яркий представитель этого класса.

Еще помню воспоминание из юности, когда удалось достать дискету с этим языком. Ух, с каким задором горели мои глаза, когда мне казалось, ну вот, еще чуть-чуть и будет создана система с базой знаний, у которой и можно будет получить заветный ответ 42 на любой вопрос.

Так почему этого так и не случилось? В чем проблема Пролога, да и любой системы / языка программирования, назначение которых анализировать факты и искать ответы на вопросы?

Эта проблема называется «Комбинаторный взрыв» — экспоненциальная зависимость времени работы алгоритма от количества входных данных. И есть как минимум два решения этой проблемы.
Читать полностью »

Модели глубокого обучения улучшаются с увеличением количества данных и параметров. Даже с последней моделью GPT-3 от Open AI, которая использует 175 миллиардов параметров, нам ещё предстоит увидеть плато роста количества параметров.

Для некоторых областей, таких как NLP, рабочей лошадкой был Transformer, который требует огромных объёмов памяти графического процессора. Реалистичные модели просто не помещаются в памяти. Последний метод под названием Sharded  [букв. ‘сегментированный’] был представлен в Zero paper Microsoft, в котором они разработали метод, приближающий человечество к 1 триллиону параметров.

Специально к старту нового потока курса по Machine Learning, делюсь с вами статьей о Sharded в которой показывается, как использовать его с PyTorch сегодня для обучения моделей со вдвое большей памятью и всего за несколько минут. Эта возможность в PyTorch теперь доступна благодаря сотрудничеству между командами FairScale Facebook AI Research и PyTorch Lightning.

Как экономить память и удваивать размеры моделей PyTorch с новым методом Sharded - 1


Читать полностью »

Нейроссия: как я научил нейросеть рисовать русскую хтонь - 1

Вступление

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js