Не каждый может найти время и деньги на то, чтобы получить очное образование в сферах Data Science (DS, наука о данных), AI (Artificial Intelligence, искусственный интеллект), ML (Machine Learning, машинное обучение). Недостаток времени и нехватка денег — это серьёзные препятствия. Преодолеть эти препятствия можно, занявшись самообучением. Но и тут не всё так просто. Для того чтобы успешно учиться самостоятельно, нужны дисциплина, сосредоточенность и правильный подбор учебных предметов. Самообучение в выбранной области, при правильном подходе, можно свободно совмещать с обычной жизнью или с учёбой в общеобразовательных учреждениях. Но в некоторых областях знаний, в таких, как DS, AI, ML, очень сложно начать учиться самостоятельно. Однако, прошу поверить мне на слово, сложности стоят того, что можно получить в результате. Ключ к успеху в самообучении лежит в том, чтобы учиться в собственном темпе.
В этом материале я хочу рассказать о том, как можно действовать тому, кто хочет самостоятельно обрести знания в областях DS, AI и ML. Применение предложенных здесь методов учёбы способно привести к хорошему прогрессу в изучении нового. Здесь, кроме того, я собираюсь поделиться ссылками на ресурсы, которыми я пользуюсь, и которые я без тени сомнения готов порекомендовать другим.
Читать полностью »