Рубрика «искусственный интеллект» - 42

Я люблю ввязываться в авантюры, и за последний месяц об одной из них я пару раз рассказывал друзьям, что вызывало восторг, поэтому решил поделиться с хабравчанами! Эта история про отважные пет-проекты, мощь опен-сорса и саморазвитие, а также основные технические детали. Надеюсь, вас это вдохновит :)

Ещё один поиск Вк по фото - 1

1. Предыстория

Читать полностью »

Сегодня нейронные сети широко известны благодаря достижениям таких учёных как Джеффри Хинтон, Йошуа Бенджио и Ян ЛеКун. Но далеко не все открытия в области коннекционизма сделаны на Западе. Над нейронными сетями начиная с конца 50-х годов активно работали и в Советском союзе, хотя за исключением специалистов сегодня немногие знают о подробностях этих исследований. Поэтому мы решили напомнить о работе советских учёных, рассказав историю отечественного коннекционизма.
История нейронных сетей в СССР - 1
Учёные Галушкин А.И. и Ивахненко А.Г.

1960-е стали золотым веком советской науки. К 1975 году ¼ от всего количества учёных в мире работала в СССР, при этом большое внимание уделялось точным наукам, плоды которых часто имели прикладное значение. Не обходили стороной и кибернетику, в которой видели огромный потенциал. Под влиянием военного и учёного Анатолия Китова она была реабилитирована после недолгой «опалы». Шла работа в области автоматического управления, машинного перевода, сетевых технологий… Сейчас бы мы сказали, что в СССР существовала целая школа искусственного интеллекта!
Читать полностью »

10 полезных расширений для дата-сайентистов - 1


Каждый специалист по Data Science тратит большую часть своего времени на визуализацию данных, их предварительную обработку и настройку модели на основе полученных результатов. Для каждого исследователя данных именно эти моменты – самая сложная часть процесса, поскольку хорошую модель можно получить при условии, что вы точно выполните все эти три шага. И вот 10 очень полезных расширений Jupyter Notebook, которые помогут вам выполнить эти шаги.

Читать полностью »

Как умные тележки покоряют супермаркеты в США - 1

Магазины в Америке рассчитывают на то, что после пандемии люди больше не захотят касаться руками общих мест и общаться с кассирами. Последним таким ритейлером стал Kroger, с 2750 магазинов в стране. Он выпустил «умную» тележку, умеющую сканировать и взвешивать продукты. А еще — давать рекламу, от которой очень сложно устоять.

Читать полностью »

Эта статья об участии в чемпионате по написанию игрового искусственного интеллекта Russian AI Cup

Игра

Дисклеймер, пока все не разбежались

Хоть в финале я и был 16-м, статья описывает бота, удерживавшего 5-е место в общем зачете песочницы на момент её остановки.

5 место в песочнице

Я не планировал писать статью о 16-м месте, но другие участники попросили, а потому, дабы не было стыдно никому смотреть в глаза, я потратил ещё немного времени уже после завершения чемпионата на исправление тех вещей, которые не успел исправить во время чемпионата. Результат на скриншоте.

Читать полностью »

Перевод статьи A Recipe for Training Neural Networks от имени автора (Andrej Karpathy). С некоторыми дополнительными ссылками.

Также доступна версия на украинском языке в личном блоге: Рецепт навчання нейрнонних мереж.

Рецепт обучения нейросетей - 1

Несколько недель назад я опубликовалЧитать полностью »

AI на минималках 2: Генератор стихов на Prolog

Мемная картинка

На картинке — четверостишье, сгенерированное моей программой.

Оказывается "стихи" писать легко, нужно только знать несколько необходимых ингредиентов: размер, ритм, рифма. "Стихи" в кавычках, потому что в настоящем стихосложении, как и в любом другом искусстве, незыблемых законов нет. Однако в классике очень много правил, при соблюдении которых получается писать неплохие стихи, даже если вы никогда раньше этого не делали. Причём эти правила довольно просто программируются: "в строке должно быть равно N слогов", "нечётные строки должны рифмоваться", "ударные и безударные слоги в строке должны идти в определённом порядке" и т.д. Перечислив все правила, я свёл задачу генерации стихов к простому комбинаторному поиску. Язык Prolog как раз и предназначен для таких задач — описании правил и генерации объектов, выполняющих эти правила.

Кто хочет научится писать стихи и познакомиться с Prolog, прошу под кат.

Читать полностью »

Как машинное обучение позволило Dropbox экономить ежегодно 1,7 миллиона долларов - 1

Недавно благодаря предсказательной мощи машинного обучения (machine learning, ML) мы обеспечили экономию 1,7 миллионов долларов в год на инфраструктурных тратах, оптимизировав процесс генерации и кэширования превью документов Dropbox. Машинное обучение и раньше применялось в Dropbox для таких хорошо известных функций, как поиск, рекомендации файлов и папок, а также OCR при сканировании документов. Хоть и не все сферы применения ML непосредственно видны пользователю, они всё равно изнутри влияют на развитие бизнеса.

Что такое превью?

Функция Dropbox Previews позволяет пользователям просматривать файл без скачивания контента. В дополнение к превью-миниатюрам Dropbox имеет интерактивную поверхность Previews с возможностью обмена между пользователями и совместной работы, в том числе использования комментарии и тегирования других пользователей.
Читать полностью »

Исполнительный директор центра искусственного интеллекта МТС Аркадий Сандлер ушел из компании. Это может быть связано с тем, что руководство недовольно отсутствием готовой к продажам умной колонки с голосовым помощником. Её разработку курировал Сандлер.
В июне колонки раздали для тестирования нескольким тысячам пользователей, сейчас несколько десятков можно найти на Avito по цене от 2,5 до 5 тысяч рублей. В большинстве объявлений указывается, Читать полностью »

Работать с Data Science в Jupyter, конечно, очень приятно, но если вы хотите пойти дальше и развернуть свой проект или модель на облачном сервере, то здесь есть много отличных решений — с помощью Flask, Django или Streamlit. Хотя облачные решения по-прежнему самые популярные, часто хочется создать быстрое приложение с графическим интерфейсом. Например:

  • Модель ML тестируется на различных наборах данных. Вы можете перетащить файлы CSV в модель и отрисовать кривую AUS/ROC. Здесь GUI проявит себя прекрасно, правда?
  • Построить случайную переменную или статистическое распределение в заданном диапазоне и динамически управлять параметрами с помощью графического интерфейса.
  • Быстро запустить некоторые задачи обработки или предварительной обработки данных в наборе с помощью GUI вместо того, чтобы писать кучу кода.

В этой статье мы покажем, как создать такой графический интерфейс, потратив минимум усилий на изучение библиотеки Python.

Как сделать Data Science приложение для Windows (и не только) с графическим интерфейсом с помощью PySimpleGUI - 1


Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js