Рубрика «искусственный интеллект» - 41

Все, что познается, имеет число, ибо невозможно ни понять ничего, ни познать без него – Пифагор

В этой статье:

Матрица смежности

Матрица инцидентности

Список смежности (инцидентности)

Взвешенный граф (коротко)

Итак, мы умеем задавать граф графическим способом. Но есть еще два способа как можно задавать граф, а точнее представлять его. Для экономии памяти в компьютере граф можно представлять с помощью матриц или с помощью списков.

Матрица является удобной для представления плотных графов в которых количество ребер (E) примерно равно количеству вершин (V).

Читать полностью »

«Лаборатория Касперского» исследовала путем опроса пользователей использование приложений для знакомств в мире и обнаружила некоторые интересные факты:

  • Настоящие имена пишут 53% пользователей;
  • 25% указывают ссылки на соцсети, но только 7% целенаправленно используют дейтинги для привлечения подписчиков (и в 79% случаев преуспевают);
  • 8% ищут в дейтингах работу, 66% искавших сказали,Читать полностью »
image

В 2019 году два студента китайского университета выполняли проект с ИИ, представлявший собой простую игру «волки против овец». Старший участник команды, учащийся в Китае гражданин Таиланда, после выпуска из университета переехал работать в Австралию, поэтому проект оказался заброшенным.

Младший участник команды начал преподавать. В марте 2021 года он рассказал в переписке одному своему студенту о результатах эксперимента. Студента так развеселила эта история, что он сделал скриншот текста и разослал его своим друзьям.

Эти скриншоты стали виральными в китайских соцсетях и породили небольшую сенсацию.

Лучше смерть от камня, чем поимка овцы

Игра была простой. Компьютер случайным образом располагал на игровом поле двух волков и шесть овец. Волкам нужно было за 20 секунд поймать всех овец и уклоняться от камней.

Чтобы мотивировать ИИ-волка повышать свою производительность, разработчики также создали простую систему очков.

Если волк ловил овцу, то он получал 10 очков. Если он сталкивался с камнем, то вычиталось 1 очко. Чтобы волки имели стимул ловить овец как можно быстрее, за каждую прошедшую секунду у волков отнималось 0,1 очка.

У волков были и другие способности — они знали, в каком направлении смотрят, что находится перед ними, где расположена овца, собственная скорость, скорость овцы и т.д., а также множество других параметров, которые должны были помогать волкам в их охоте.

Цель проекта заключалась в том, чтобы проверить, смогут ли ИИ-волки путём обучения и переобучения найти способ максимизировать количество получаемых очков.

Спустя 200 000 итераций исследователи обнаружили, что чаще всего волки просто ударялись о камни, чтобы совершить самоубийство.
Читать полностью »

Сговор и жульничество в академических кругах - 1
«Он не публиковался» © Mischa Richter

На Хабре много говорилось о проблеме "publish or perish" (публикуйся или умри), фейковых журналах и конференциях, накрутке числа публикаций и индекса цитируемости, фальшивых «соавторах», даже о генераторах псевдонаучных текстов. Но в 2021 году выявилось ещё одно очень неприглядное явление: круговое голосование рецензентов. Когда статьи выбирают не по значимости, а по именам авторов, то это подрывает основы взаимного доверия и цельность всей научной области.

Конечно, тут ничего нового и «все всё знали». Просто нарыв наконец-то вскрылся…

На одной из конференций раскрыли попытку жульничества в системе отбора публикаций. К сожалению, «отличилась» наша отрасль — информатика (computer science).
Читать полностью »

Экспериментальный сервис «Балабоба» от Яндекса генерирует тексты на основе предложенных ему слов с помощью алгоритмов искусственного интеллекта -- разработанной в Яндексе языковой модели YaLM (Yet another Language Model), «вдохновленной GPT-3 от компании Open AI и другими языковыми моделями на архитектуре Transformer». Официальный выпуск сервиса в публичный доступ был смазан его Читать полностью »

Оракул технологического мира Gartner регулярно и охотно делится с обществом своими наблюдениями относительно текущих трендов. Эксперты компании составили подборку из 10 трендов в сфере данных и аналитики, которые стоит учитывать ИТ-лидерам в 2021 году – от искусственного интеллекта до малых данных и применения графовых технологий. 

Материал Gartner является отличной пищей к размышлению, а в некоторых случаях он может сыграть важную роль при принятии стратегических решений. Для того, чтобы оставаться в курсе основных трендов и в то же время не тратить ресурсы на собственный анализ, уберечься от ошибок субъективного мнения, удобно пользоваться предоставленным отчетом, перевод которого и предлагается в этой статье. 

ТОП-10 трендов в сфере данных и аналитики 2021. Версия Gartner - 1

Источник
Читать полностью »

Как Яндекс применил генеративные нейросети для поиска ответов - 1

Только что мы представили новую версию поиска Y1. Она включает в себя комплекс технологических изменений. В том числе улучшения в ранжировании за счёт более глубокого применения трансформеров. Подробнее об этом направлении мой коллега Саша Готманов уже рассказывал в нашем блоге. В новой версии модель стала мощнее: количество параметров возросло в 4 раза. Но сегодня мы поговорим о других изменениях.

Когда человек вводит запрос в поисковик, он ищет информацию или способ решения своей задачи. Наша глобальная цель — помогать находить такие ответы, причём сразу в наиболее ёмком виде, чтобы сэкономить людям время. Этот тренд на ускорение решения пользовательских задач особенно заметен в последние годы. К примеру, теперь многие пользователи задают свои вопросы не текстом в поиске, а голосовому помощнику. И тут нам на помощь пришли огромные генеративные нейросети, которые способны перерабатывать, суммаризировать и представлять в ёмком виде тексты на естественном языке. Пожалуй, самой неожиданной особенностью таких сетей стала возможность быстро обучаться на всё новые задачи без необходимости собирать большие датасеты.

Сегодня мы поделимся опытом создания и внедрения технологии YaLM (Yet another Language Model), которая теперь готовит ответы для Поиска и Алисы. В этом мне помогут её создатели — Алексей Петров petrovlesha и Николай Зинов nzinov. Эта история основана на их докладе с Data Fest 2021 и описывает внедрения модели в реальные продукты, поэтому будет полезна и другим специалистам в области NLP. Передаю слово Алексею и Николаю.

Читать полностью »

В одной из школ Подмосковья будут тестировать нейросеть, которая с помощью умных камер наблюдает за учениками и анализирует их поведение. Она будет уведомлять школьных сотрудников и родителей о потенциально опасном поведении, плохом эмоциональном состоянии и других проблемах учеников, а также о проблемах со школьной инфраструктурой (например,Читать полностью »

Читать полностью »

Представлюсь

Всем привет! Меня зовут Влад Виноградов, я руководитель отдела компьютерного зрения в компании EORA.AI. Мы занимаемся глубоким обучением уже более трех лет и за это время реализовали множество проектов для российских и международных клиентов в которые входила исследовательская часть и обучение моделей. В последнее время мы фокусируемся на решении задач поиска похожих изображений и на текущий момент создали системы поиска по логотипам, чертежам, мебели, одежде и другим товарам.

Эта публикация предназначена для Machine Learning инженеров и написана по мотивам моего выступления Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js