Рубрика «искусственный интеллект» - 181

Решение проблемы понимания контекста искусственным интеллектом. Часть 1 - 1

Понимание естественного языка является AI полной задачей. Одним из аспектов такого понимания является понимание контекста. В данной статье я объясню, какие виды контекста выделяет наша психика, как она работает с одним из видов контекста, и как мы этот процесс воссоздаем в нашей технологии искусственного интеллекта.

The trophy doesn't fit into the brown suitcase because it's too [small/large].
What is too [small/large]?
Answers:The suitcase/the trophy.
The Winograd Schema Challenge

В предыдущей статье описан наш подход к разработке ИИ и то, что нами уже сделано на настоящий момент. Напомню, что мы создаем ИИ путем прямого копирования структур и процессов психики человека.
Читать полностью »

image

Если говорить об исследованиях, оказавших влияние на развитие нейронауки, то Университетскому колледжу Лондона (ULC) есть чем похвастаться. Этот вывод – не мнение эксперта или результат анализа огромного штата сотрудников какого-нибудь аналитического агентства: всю работу проделал компьютер.

Программа Semantic Scholar проанализировала содержание 2,5 миллиона научных статей и цитируемость их авторов, а затем рассчитала оценку влияния каждого автора на остальных. В результате оказалось, что трое из самых влиятельных ученых в этой области работают на благо науки в Университетском колледже Лондона: Карл Фристон, специалист по параметрическим методам статистики (1 место), Раймонд Долан, эксперт в области эмоционального влияния на познание (2 место) и Крис Фрит, исследователь в сфере когнитивного основания шизофрении и социального познания (7 место). Читать полностью »

image
3D-окружение еще сложно для восприятия слабой формой ИИ, что влечет за собой проблемы компьютера при прохождении таких игр

При помощи видеоигр современные специалисты по искусственному интеллекту собираются обучать ИИ методам преодоления препятствий и решения возникающих проблем «на ходу». К примеру, сотрудники DeepMind совместно с Blizzard превратили StarCraft II в среду для обучения слабой формы ИИ. В прошлом году система искусственного интеллекта Google самостоятельно освоила 49 старых игр Atari.

И речь идет не о системе, интегрированной в игру (вроде AI-противников в файтингах, футбольных симуляторах или симуляторах гонок), которой прекрасно известны условия и правила. ИИ, который обучают разработчики в компьютерных играх сейчас, поставлен в равные с человеком условия. Система наблюдает за картинкой на экране, обучаясь методам проб и ошибок. И такая программа способна находить решение не только в играх, она пригодна для поиска решения в самом широком кругу задач, независимо от правил или условий.
Читать полностью »

Могут ли компьютеры и ИИ стать изобретателями? - 1

Профессор юридических наук из Университета Суррея считает, что необходимо с формальной точки зрения приравнять компьютерный ИИ к изобретателю наравне с людьми за участие в создании какого-либо изобретения. Эта точка зрения высказывается в статье, опубликованной в журнале Boston College Law Review, озаглавленной «Я мыслю, следовательно, я изобретаю: творческие компьютеры и будущее патентного права» [I Think, Therefore I Invent: Creative Computers and the Future of Patent Law].

В вводной части статьи утверждается, что хотя раньше уже выдавались патенты на изобретения, сделанные компьютерами, концепция компьютерного изобретательства в судах не рассматривалась. Идея о признании изобретений за творческими компьютерами может звучать сюрреалистично, но на самом деле они безо всякого признания выдают изобретения, которые в принципе можно патентовать, уже десятилетия.
Читать полностью »

Нейросети научились судить о книге по обложке - 1Устойчивое выражение «не суди книгу по ее обложке» предостерегает от оценки чего-либо или кого-либо по одному только внешнему виду. Но когда читатель видит книгу, это все равно происходит: знакомство обычно начинается с обложки. Именно она оставляет первое впечатление о содержании и начинает рисовать историю в сознании человека. Хорошие обложки просто созданы для того, чтобы по ним судили.

Люди отлично справляются с определением жанра, едва взглянув на визуальное оформление книги. Согласитесь, что выбрать кулинарную книгу, биографию или путеводитель, просто посмотрев на обложку – довольно легко. Тогда возникает интересный вопрос: может ли искусственный интеллект так же успешно судить о книге по обложке, как и человек?Читать полностью »

В Массачусетском технологическом институте разработали робоскутер - 1
Да, маленьким такой скутер назвать нельзя (Источник: MIT)

Созданием автоматических систем управления автомобилем сейчас занимаются многие компании, как зарубежные, так и отечественные. Такие системы могут быть как полностью автоматическими — подобными разработками занимается Google, так и частично (цифровые помощники разного типа). Кстати, именно цифровым помощником является Autopilot компании Tesla Motors. Это не автопилот в полном понимании этого термина. Разработчики из Массачусетского технологического института (Massachusetts Institute of Technology, MIT) решили создать еще и роботизированный скутер. Проект разрабатывался в сотрудничестве с такими организациями, как Национальный университет Сингапура и CSAIL (Artificial Intelligence Laboratory).

Ранее эта же команда исследователей занималась изучением возможности создания автоматических гольф-мобилей. Для них разрабатывалась специальная программная платформа, которую с некоторыми изменениями и дополнениями использовали и в новом проекте. Скутеры с автоматической системой управления, по мнению разработчиков, могут использоваться, например, теми людьми, кто не может по какой-либо причине ходить самостоятельно. Такие системы могут оказаться полезными и частным пользователям, и компаниям.
Читать полностью »

Toshiba представила нейроморфный процессор с низким энергопотреблением - 1

Японская компания Toshiba заявила о своем вкладе в развитие Интернета вещей и анализа больших данных. На этот раз она разработала нейроморфный процессор с очень низким энергопотреблением для нейронных сетей с временной задержкой (TDNN). Эта сеть состоит из большого количества модулей, в которых используется не цифровая, а аналоговая обработка данных.Читать полностью »

Исследователи из MIT научили нейронные сети аргументировать свои решения - 1

В последнее время нейросети показывали себя прекрасно во многих прикладных задачах. Они искали закономерности в данных, которые использовались для классификации и прогнозирования. Нейросети с кажущейся легкостью распознавали объекты в цифровых изображениях или, «прочитав» отрывок текста, резюмировали его тему. Однако никто не мог рассказать, какие преобразования проходили вводимые данные для получения того или иного решения. Даже авторы сетей владели данными на входе и информацией на выходе. И если рассматривать визуальные данные, то иногда даже можно автоматизировать опыты по выяснению, на какие составляющие изображений реагирует нейросеть. А с системами обработки текста процесс более сложный. В чем сложность понимания человеческого языка машиной вы можете прочитать ниже.

В лаборатории CSAIL (лаборатории информатики и искусственного интеллекта) Массачусетского технологического института исследователи нейросетей сделали так, что теперь «виртуальный мозг» в дополнение к решению выдает и его обоснование. Они обучали два модуля одной нейросети одновременно. Данными для обучения были текстовые отрывки. Результаты порадовали: компьютер думал, как и человек, в 95% случаев. И все же, прежде, чем запустить новый метод нейросетей в активное пользование, потребуется дополнительная настройка и доработка.

Почему картинки обрабатывать легче, чем текст? Можно ли будет беспилотным автомобилям ездить свободно, позволительно ли заменять живого доктора запрограммированным интеллектом, внутри которого бессчетное количество нейронов? Приближает ли это нас к сознательным машинам в реальной жизни? Компьютерные модели нейронных сетей ведут себя так же, как и человеческий мозг, но им пока не разрешали принимать решения, затрагивающие жизни людей. Чтобы изменить это, специалистам понадобилось время и теперь мы можем узнать, как нейросеть приходит к итоговым значениям.
Читать полностью »

Нейросеть LipNet читает по губам с точностью 93,4% - 1
Командир Дэйв Боумен и второй пилот Фрэнк Пул, не доверяя компьютеру, решили отключить его от управления кораблём. Для этого они совещаются в звукоизолированной комнате, но HAL 9000 читает их разговор по губам. Кадр из фильма «Космическая одиссея 2001 года»

Чтение по губам играет важную роль в общении. Ещё эксперименты 1976 года показали, что люди «слышат» совершенно другие фонемы, если наложить неправильный звук на движение губ (см. "Hearing lips and seeing voices", Nature 264, 746-748, 23 December 1976, doi: 10.1038/264746a0).

С практической точки зрения чтение по губам — важный и полезный навык. Можно понимать собеседника не выключая музыку в наушниках, читать разговоры всех людей в поле зрения (например, всех пассажиров в зале ожидания), прослушивать людей в бинокль или подзорную трубу. Область применения навыка очень широка. Освоивший его профессионал без труда найдёт высокооплачиваемую работу. Например, в сфере безопасности или конкурентной разведке.
Читать полностью »

Как искусственный интеллект меняет рынок чипов - 1

Менее, чем за 12 часов, три разных человека предложили мне деньги за то, чтобы я час разговаривал с незнакомым человеком по телефону.

Все они сказали, что им понравилась моя статья про то, как Google создаёт новый компьютерный чип для ИИ, и все они упрашивали меня обсудить эту тему с их клиентом. Каждый описал своего клиента как менеджера большого хедж-фонда, но не назвал его имени.

Запросы пришли от так называемых экспертных сетей – исследовательских фирм, связывающих инвесторов с людьми, которые могут помочь первым понять определённые рынки и обеспечить конкурентное преимущество (иногда, судя по всему, через инсайдерскую информацию). Эти экспертные сети желали, чтобы я объяснил, как ИИ-процессор от Google повлияет на рынок чипов. Но сначала они потребовали подписать для них соглашение о неразглашении. Я отказался.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js