Рубрика «искусственный интеллект» - 135

Здравствуйте, коллеги.

Надеемся еще до конца августа приступить к переводу небольшой, но поистине базовой книги о реализации возможностей ИИ на языке Python.

Ray: Распределенная система для использования ИИ - 1

Господин Гифт, пожалуй, в дополнительной рекламе не нуждается (для любопытствующих — профиль мэтра на GitHub):

Ray: Распределенная система для использования ИИ - 2

В предлагаемой сегодня статье будет коротко рассказано о библиотеке Ray, разработанной в Калифорнийском университете (Беркли) и упомянутой в книге Гифта мелким петитом. Надеемся, что в качестве раннего тизера — то, что надо. Добро пожаловать под кат
Читать полностью »

Захотелось мне написать разговаривающую программу. Очень захотелось, позарез.

Конечно, мне далеко до профессиональных программистов, и лингвистом я тоже не являюсь, но системное мышление имеется, и чувство языка на месте. Тем более что тематикой ИИ давно интересуюсь, даже пару-тройку постов накатал в свое время. Отчего не реализовать познания в программном коде? Ну и попробовал, насколько смог.

Знакомьтесь, Ваня Разумный.

Создание ИИ методом «глокой куздры». Интеллектуальная одиссея - 1

Ниже находится описание проблем, возникших передо мной на этом хоженом-перехоженом пути, и способов их преодоления.

По поводу результата оговорюсь сразу: целью был не программный код, а формулировка принципов искусственного мышления, функционирующего НЕ на основе физической реальности, как биологические организмы, а на основе СИНТАКСИСА. Поклонники теста Тьюринга, нейронных сетей и машинного обучения могут не беспокоиться.

Внимание, материал объемный.
Читать полностью »

На этой неделе мы снова делали приложения для Ассистента Google, обсуждали Google Pay и плохих дизайнеров, разрабатывали смешанную реальность и PWA, погружались в геймдизайн и маркетплейс продуктов. Все это и многое другое в нашем новом дайджесте!

Дайджест интересных материалов для мобильного разработчика #266 (13 августа— 19 августа) - 1Читать полностью »

Охотясь на новые фундаментальные частицы, физикам всегда приходилось предполагать, как частицы могут повести себя. Новым алгоритмам с машинным обучением этого не нужно.

Как искусственный интеллект может подстегнуть поиски новых частиц - 1

В столкновении, произошедшем на Большом адронном коллайдере в этом апреле обнаружены отдельные заряженные частицы (оранжевые линии) и крупные струи частиц (жёлтые конусы)

Большой адронный коллайдер (БАК) сталкивает миллиарды пар протонов каждую секунду. Иногда этой машине удаётся немного покачнуть реальность, и создать в этих столкновениях нечто, невиданное ранее. Но поскольку такие события по определению неожиданные, физики не знают, что конкретно им нужно искать. Они беспокоятся, что, просеивая данные о миллиардах этих столкновений, и делая выборку какого-то более посильного количества, они могут нечаянно удалить свидетельства какой-нибудь новой физики. «Мы всегда беспокоимся, что можем выплеснуть с водой ребёнка», — говорит Кайл Кранмер, специалист по физике частиц из Нью-Йоркского университета, работающий в рамках эксперимента ATLAS на БАК.
Читать полностью »

Когда-либо слышали о «deepfakes»? ИИ, который накладывает лицо одного человека на тело другого, использовали для замены Харрисона Форда на Николаса Кейджа в бесчисленных видеоклипах, а также и для более гнусных целей: знаменитости без их ведома появились в порно и пропаганде. Теперь, к лучшему или худшему, исследователи из Университета Carnegie Mellon разработали новую, более мощную и универсальную систему.

Читать полностью »

Победит ли OpenAI Five профессиональную команду на The International - 1

Прогресс искусственного интеллекта от OpenAI в освоении Dota 2 — лучшая иллюстрация мема «вот … тогда и посмотрим». Сейчас мы находимся в месте, где ИИ уже обыграл топовых игроков один на один, научился играть командой с обычными игроками, преодолел значительные ограничения, обыграл полупрофессиональную команду.

Следующий шаг — «вот обыграет лучшую команду в мире, тогда и посмотрим». Получится ли? Кто как считает.
Читать полностью »

Теория автоэнкодеров и генерирующих моделей последнее время получила серьезное развитие, но достаточно мало работ посвящено тому, как можно использовать их в задачах распознавания. При этом свойство автоэнкодеров получать скрытую параметрическую модель данных и математические следствия из этого дают возможность связать их с Байесовскими методами принятия решения.

В статье предложен оригинальный математический аппарат «набор автоэнкодеров с общим латентным пространством», который позволяет выделять абстрактные понятия из входных данных и демонстрирует способность к «one-shot learning». Кроме того, с его помощью можно преодолеть многие фундаментальные проблемы современных алгоритмов машинного обучения, основанных на многослойных сетях и подходе «Deep learning».
Читать полностью »

Магическое мышление по поводу машинного обучения не приблизит появление реального ИИ - 1

«Любая достаточно развитая технология», — писал серый кардинал научной фантастики Артур Кларк, — «неотличима от магии». Эта цитата, которую без устали цитируют продвигающие технологию фанаты, пожалуй, стала самым разрушительным высказыванием из всех, что сделал Кларк, поскольку она поощряет наше гипнотическое изумление перед технологиями и отключает критическое мышление. Поскольку, когда речь идёт о «магии», это по определению будет что-то необъяснимое. Нет смысла задавать вопросы об этом; просто принимайте его, как оно есть, расслабьтесь и приглушите недоверие.

Сейчас больше всего магического мышления притягивает к себе искусственный интеллект (ИИ). Энтузиасты описывают его так, будто это самое важное изобретение со времён колеса. Пессимисты рассматривают его как экзистенциальную угрозу человечеству: первая «сверхумная» машина, которую мы создадим, станет началом конца человечества; единственный вопрос, будут ли машины содержать нас в качестве домашних животных.
Читать полностью »

image

Если вы достаточно долго увлекаетесь нейросетевыми технологиями, то наверняка встречались с мнением, кратко заключенным в риторическом вопросе: «Как ты объяснишь человеку, когда нейросеть считает, что у него рак?». И если в лучшем случае такие мысли заставят тебя сомневаться в использовании нейросетей в достаточно ответственных сферах, то в худшем случае ты можешь и потерять весь свой интерес.

Читать полностью »

После добавления случайных факторов в относительно простую симуляцию робот из OpenAI научился выполнять сложные наладонные операции

OpenAI демонстрирует перенос сложных манипуляций из симуляций в реальный мир - 1

Наладонные операции – это одно из тех действий, что стоят в верхней части списка «умений, не требующих усилий от людей, и чрезвычайно сложных для роботов». Не задумываясь, мы способны адаптивно управлять пальцами руки, противостоящим им большим пальцем и ладонью, учитывая трение и гравитацию, манипулируя предметами одной рукой, не задействуя другую – в течение сегодняшнего дня вы наверняка проделывали этот трюк много раз, хотя бы со своим телефоном.

У людей уходят годы тренировок на то, чтобы научиться надёжно работать пальцами, но у роботов нет столько времени на обучение. Такие сложные задачи всё ещё решаются через практическое обучение и приобретение опыта, и задача состоит в том, чтобы найти способ обучать робота быстрее и эффективнее, чем просто дать роботизированной руке что-то, чем можно манипулировать снова и снова, пока она не поймёт, что срабатывает, а что – нет; на это может уйти сотня лет.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js