Рубрика «искусственный интеллект» - 115

Медиа рассказывают, что искусственный интеллект лишает рабочих мест, поддерживает Адольфа Гитлера и дискриминирует женщин. Но ИИ также помогает людям — и иногда делает это человечнее многих из нас. Накануне AI School мы подобрали четырех таких ботов и попросили руководителя отдела компьютерной лингвистики компании «Наносемантика» и спикера курса Анну Власову рассказать, как создать сервис, который сделает мир добрее.

AI против харассмента и депрессии: как боты делают мир лучше - 1
Читать полностью »

Каталог программных конструкций, языков и API, которые неожиданно являются полными по Тьюрингу; последствия этого для безопасности и надёжности. Приложение: сколько компьютеров в вашем компьютере?

Любая достаточно сложная программа на Си или Фортране содержит заново написанную, неспецифицированную, глючную и медленную реализацию половины языка Common Lisp. — Десятое правило Гринспена

Полнота по Тьюрингу (Turing-completeness, TC) — это свойство системы при некотором простом представлении ввода и вывода реализовать любую вычислимую функцию.

Тьюринг-полнота — фундаментальное понятие в информатике. Она помогает ответить на многие ключевые вопросы, например, почему невозможно создание идеальной антивирусной программы. Но в то же время она является поразительно распространённым явлением. Казалось бы, компьютерной системе трудно достичь такой универсальности, чтобы выполнять любую программу, но получается наоборот: трудно написать полезную систему, которая немедленно не обратится в полную по Тьюрингу. Оказывается, что даже небольшой контроль над входными данными и преобразованием их в результат, как правило, позволяет создать тьюринг-полную систему. Это может быть забавным, полезным (хотя обычно нет), вредным или чрезвычайно небезопасным и настоящим подарком для хакера (см. о «теоретико-языковой безопасности», которая изучает методы взлома «странных машин»1). Удивительные примеры такого поведения напоминают нам о том, что полнота по Тьюрингу таится повсюду, а защитить систему чрезвычайно сложно.
Читать полностью »

Учим агента играть в Mario Kart с помощью фильтров - 1

Владимир Иванов vivanov879, Sr. Deep Learning Engineer в NVIDIA, продолжает рассказывать про обучение с подкреплением. В этой статье речь пойдет про обучение агента для прохождения квестов и о том, как нейросети используют фильтры для распознавания изображений.

В предыдущей статье разбиралось обучение агента для простых стрелялок.

Про применение обучения с подкреплением на практике Владимир будет рассказывать на AI Conference 22 ноября.Читать полностью »

Вы слишком многого ожидаете от роботов Boston Dynamics - 1

На фестивале WIRED25 в Сан-Франциско на сцену взобрался робот SpotMini от Boston Dynamics, и сделал то, чего до сих пор не делали четырёхногие роботы: станцевал танец "бегущий человек" так, будто был создан для этого. Он, конечно, двигался больше как робот, чем как человек, но это показало, насколько далеко продвинулся Spot в своём развитии: за двадцать пять лет жизни WIRED и Boston Dynamics роботы, наконец, развились достаточно для того, чтобы пройти танцем по нашему миру. И научились делать ещё много всего, конечно же.

И хотя движения Spot впечатляют, к ним прилагается откровенный рассказ Марка Райберта, главы Boston Dynamics, побеседовавшего с главным редактором WIRED Николасом Томпсоном по поводу возможностей, стремлений и будущего Spot и гуманоидного робота Atlas.
Читать полностью »

Платить за бургер без карты, не ждать регистрации в отеле, не стоять в очереди на кассу —все это возможно с помощью технологий распознавания лиц. В последние годы подобные решения активно тестируют многие крупные российские и зарубежные ритейлеры. Мы отобрали пять самых интересных примеров.

От Alibaba до «Пятерочки»: кто и как использует систему распознавания лиц в бизнесе - 1

Узнать больше о том, как использовать распознавание лиц, нейросети и машинное обучение в бизнесе, можно на интенсивном курсе AI School.
Читать полностью »

Вредоносное машинное обучение как диагностический метод - 1

Привет всем!

Продолжая проработку темы глубокого обучения, мы как-то раз хотели поговорить с вами о том, почему нейронным сетям повсюду мерещатся овцы. Эта тема рассмотрена в 9-й главе книги Франсуа Шолле.

Таким образом мы вышли на замечательные исследования компании «Positive Technologies», представленные на Хабре, а также на отличную работу двоих сотрудников MIT, считающих, что «вредоносное машинное обучение» — не только помеха и проблема, но и замечательный диагностический инструмент.

Далее — под катом.
Читать полностью »

Привет!

10 ноября (уже завтра!) в Москве в киноцентре «Октябрь» пройдет большая конференция Sberbank Data Science Day, где будут награждение победителей SDSJ 2018, выступления большого количества международных и российских экспертов в области Data Science, секции про ML и применение искусственного интеллекта в науке и бизнесе. И еще много интересного!

Прямую трансляцию можно посмотреть тут. Под катом и на сайте программа. Также рассказываем, как оценивали победителей Sberbank Data Science Journey.

Прямая трансляция Sberbank Data Science Day 10 ноября - 1

Читать полностью »

Эти новые уловки пока ещё способны перехитрить видеоролики от Deepfake - 1

Несколько недель специалист по информатике Сывей Люй [Siwei Lyu] наблюдал за роликами deepfake, созданными его командой, с терзающим беспокойством. Эти поддельные фильмы, созданные при помощи алгоритма машинного обучения, показывали знаменитостей, занимающихся такими вещами, которыми бы они не стали заниматься. Они казались ему странно пугающими, и не только потому, что он знал, что они поддельные. «Они неправильно выглядят, — вспоминает он свои мысли, — но очень сложно точно определить, из-за чего складывается такое впечатление».

Но однажды в его мозгу возникло детское воспоминание. Как и многие другие дети, он играл с детьми в «гляделки». «Я всегда проигрывал такие состязания, — говорит он, — потому что, когда я смотрел на их немигающие лица, мне становилось очень не по себе».

Он понял, что эти поддельные фильмы вызывали у него схожий дискомфорт: он проигрывал гляделки этим звёздам кино, поскольку те не открывали и не закрывали глаза с такой частотой, как это делают реальные люди.
Читать полностью »

Алгоритмы машинного обучения ещё не понимают реальность так, как это делают люди — иногда с катастрофическими последствиями

Об авторе: Мелани Митчелл — профессор компьютерных наук в Портлендском государственном университете и приглашённый профессор в Институте Санта-Фе. Её книга «Искусственный интеллект: руководство для мыслящих людей» будет опубликована в 2019 году издательством Farrar, Straus, and Giroux

Искусственный интеллект упёрся в барьер понимания - 1
Посетитель выставки Artificial Intelligence Expo в ЮАР, сентябрь 2018 года. Фото: Nic Bothma/EPA, via Shutterstock

Наверное, вы слышали, что мы находимся в разгаре революции ИИ. Нам говорят, что машинный интеллект прогрессирует с поразительной скоростью, опираясь на алгоритмы «глубокого обучения», которые используют огромные объёмы данных для обучения сложных программ, известных как «нейронные сети».

Сегодняшние программы могут распознавать лица и записывать речь. У нас есть программы для обнаружения тонкого финансового мошенничества, для нахождения релевантных веб-страниц в ответ на неоднозначные запросы, для прокладки оптимального маршрута практически в любом месте, эти программы побеждают гроссмейстеров в шахматы и Go и переводят между сотнями языков. Более того, нам обещают уже скоро и повсеместно беспилотные автомобили, автоматическую диагностику рака, роботов по уборке домов и даже автоматические научные открытия.
Читать полностью »

AI в самом деле спасет мир? Не так давно мы писали о масштабных конкурсах от XPRIZE и DARPA, а теперь к ним присоединился и Google. 29 октября корпорация анонсировала старт подачи заявок на AI Impact Challenge – конкурс с призовым фондом в $25 млн. Его цель – создать AI-решения для социальных и экологических проблем. И, возможно, заработать корпорации плюсики в карму, которые ей сейчас очень нужны.

Добрые дела за деньги Google: новый AI Impact Challenge - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js