Рубрика «искусственный интеллект» - 110

Моддеры привлекли ИИ к улучшению текстур в играх - 1Искусственный интеллект (конечно, слабая его форма) позволяет автоматизировать решение огромного количества задач и, в целом, упростить человеку жизнь. Самые разные отрасли науки и техники уже используют технологии на основе искусственного интеллекта. Игровая сфера тоже работает с ИИ, в частности, для улучшения «интеллекта» NPC и законов игровой вселенной.

Но ИИ можно применять и для оптимизации графики. Известны кейсы, когда технологии помогали восстановить старую, почти испорченную фотографию или обновить какой-то старый фильм, записанный на поврежденную пленку. Но есть и еще одна возможность — это улучшение графики в играх.
Читать полностью »

image

Здравствуйте, Читатели!

Недавно я запустил репозиторий Homemade Machine Learning, который содержит примеры популярных алгоритмов и подходов машинного обучения, таких как линейная регрессия, логистическая регрессия, метод K-средних и нейронная сеть (многослойный перцептрон). Каждый алгоритм содержит интерактивные демо-странички, запускаемые в Jupyter NBViewer-e или Binder-e. Таким образом у каждого желающего есть возможность изменить тренировочные данные, параметры обучения и сразу же увидеть результат обучения, визуализации и прогнозирования модели у себя в браузере без установки Jupyter-а локально.

Читать полностью »

Портретный режим на смартфонах Pixel позволяет вам делать профессионально выглядящие фотографии, привлекающие внимание к объекту съёмки при помощи размытия фона. В прошлом году мы описывали, как мы подсчитываем глубину, используя единственную камеру и автофокус с определением фазы (Phase-Detection Autofocus, PDAF), также известный, как автофокус с двойными пикселями. Это процесс использовал традиционный стерео-алгоритм без обучения. В этом году на Pixel 3 мы взяли на вооружение машинное обучение, чтобы улучшить оценку глубины и выдавать ещё более качественные результаты в портретном режиме.

Телефон Pixel 3 учится определять глубину на фотографиях - 1
Слева: первоначальное изображение, снятое в HDR+. Справа – сравнение результатов съёмки в портретном режиме с использованием глубины от традиционного стерео и от машинного обучения. У результатов работы с обучением получается меньше ошибок. У традиционного результата со стерео глубина многих горизонтальных линий за мужчиной неправильно оценивается равной глубине самого мужчины, в результате чего они остаются резкими.
Читать полностью »

image

На заре машинного обучения большинство решений выглядели очень странно, обособленно и необычно. Сегодня множество ML алгоритмов уже выстраиваются в привычный для программиста набор фреймворков и тулкитов, с которыми можно работать, не вдаваясь в детали их реализации.

К слову, я противник такого поверхностного подхода, но для своих коллег хотел бы показать, что эта отрасль движется семимильными шагами и нет ничего сложного, чтобы применять ее наработки в продакшен проектах.

Для примера я покажу, как можно помочь пользователю найти нужный видеоматериал среди сотен других в нашем сервисе документооборота.

В моем проекте пользователи создают и обмениваются сотнями различных материалов: текстом, картинками, видеороликами, статьями, документами в различных форматах.

Поиск по документам представляется достаточно просто. Но что делать с поиском по мультимедиа контенту? Для полноценного сервиса пользователя надо обязать заполнить описание, дать название видеоролику или картинке, не помешает несколько тегов. К сожалению, далеко не все хотят тратить время на подобные улучшения контента. Обычно пользователь загружает ссылку на youtube, сообщает что это новое видео и нажимает сохранить. Что же делать сервису с таким “серым” контентом. Первая идея — спросить у YouTube? Но YouTube тоже наполняют пользователи (часто это один и тот же пользователь). Часто видеоматериал может быть и не с Youtube сервиса.
Так мне пришла идея научить наш сервис “слушать” видеоролик и самостоятельно “понимать”, о чем он.
Читать полностью »

Глава Google считает, что страх перед ИИ «совершенно оправдан» - 1

Сундар Пичаи, генеральный директор Google, одной из крупнейших компаний, работающих в области искусственного интеллекта, в интервью на этой неделе сказал, что опасения по поводу пагубного применения технологии «совершенно оправданы» – однако мы должны доверять технологической индустрии в том, что она сумеет со всей ответственностью урегулировать её использование.

В беседе с The Washington Post Пичаи сказал, что новые ИИ-инструменты – лежащие в основе таких инноваций, как робомобили и распознающие заболевания алгоритмы – требуют от компаний определять этические рамки и тщательно продумывать, как этой технологией можно злоупотребить.
Читать полностью »

Cтатья написана по анализу и изучению материалов соревнования по поиску корабликов на море.

image

Попробуем понять, как и что ищет сеть и что находит. Статья эта есть просто результат любопытства и праздного интереса, ничего из нее в практике не встречается и для практических задач тут нет ничего для копипастинга. Но результат не совсем ожидаем. В интернете полно описаний работы сетей в которых красиво и с картинками авторы рассказывают, как сети детерминируют примитивы — углы, круги, усы, хвосты и т.п., потом их разыскивают для сегментирования/классификации. Многие соревнования выигрываются с помощью весов с других больших и широких сетей. Интересно понять и посмотреть как и какие примитивы строит сеть.
Читать полностью »

Приглашаем 22 декабря на Data Ёлку - 1

Приглашаем 22 декабря присоединиться к команде Data Science-специалистов и вместе подвести итоги года. На встрече мы вместе подытожим, что нового было в разных областях Data Science в 2018-м, обсудим последние новости с NIPS/NeurIPS, ответим на самые актуальные вопросы от участников сообщества, а главное — наградим тех, чей вклад в сообщество ODS стал значимым за последний год.
Читать полностью »

Что это

CastlevaniaBot — это плагин для эмулятора NES Nintaco, который играет в Castlevania. Если запустить его на экране заставки, то плагин пройдёт всю игру от начала до конца. Или же можно запустить его в любом месте игры, чтобы он прошёл её часть.

В этой статье я расскажу, как создал бота, способного пройти Castlevania, и как вы можете создать нечто подобное для любой игры на NES.
Читать полностью »

Сверхинтеллект: идея, не дающая покоя умным людям - 1

Расшифровка выступления на конференции Web Camp Zagreb Мачея Цегловского, американского веб-разработчика, предпринимателя, докладчика и социального критика польского происхождения.

В 1945 году, когда американские физики готовились к испытанию атомной бомбы, кому-то пришло в голову спросить, не может ли такое испытание зажечь атмосферу.

Опасение было оправданным. Азот, из которого состоит большая часть атмосферы, энергетически нестабилен. Если столкнуть два атома достаточно сильно, они превратятся в атом магния, альфа-частицу и выпустят огромную энергию:

N14 + N14 ⇒ Mg24 + α + 17,7 МэВ

Жизненно важным вопросом было то, может ли эта реакция стать самоподдерживающейся. Температура внутри шара ядерного взрыва должна была превысить всё, что когда-то наблюдалось на Земле. Не получится ли, что мы бросим спичку в кучу сухих листьев?
Читать полностью »

Подробное интервью с легендарным лингвистом, вышедшее 6 лет назад, но ничуть не утратившее своей актуальности. Ноам Хомский —  «современный Эйнштейн», как его называют, делится своими соображениями об устройстве человеческого мышления и языка, искусственном интеллекте, состоянии современных наук. На днях ему исполнилось 90 лет, и это кажется достаточным поводом для публикации статьи. Интервью ведет молодой учёный-когнитивист Ярден Кац, он сам прекрасно разбирается в предмете, поэтому беседа очень содержательна, а вопросы столь же интересны, как и ответы.

Ноам Хомский: где искусственный интеллект пошел не туда? - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js