Рубрика «искусственный интеллект» - 109

Мы в OpenAI обнаружили, что масштаб градиентного шума [gradient noise scale], простой статистический метод, предсказывает параллелизуемость обучения нейтральной сети на широком спектре задач. Поскольку у более сложных задач градиент обычно становится более шумным, то увеличение размера пакетов, доступных для одновременной обработки, в будущем окажется полезным, и устранит одно из потенциальных ограничений ИИ-систем. В общем случае эти результаты показывают, что обучение нейросетей надо рассматривать не как загадочное искусство, и что ей можно придать точность и систематизировать.

За последние несколько лет исследователи ИИ достигали всё больше успеха в ускорении обучения нейросети при помощи распараллеливания данных, разбивающего большие пакеты данных на несколько компьютеров. Исследователи успешно использовали пакеты размером в десятки тысяч единиц для классификации изображений и моделирования языка, и даже в миллионы агентов обучения с подкреплением, игравших в Dota 2. Такие большие пакеты позволяют увеличивать объёмы вычислительных мощностей, которые эффективно участвуют в обучении одной модели, и являются одной из сил, движущих рост в области обучения ИИ. Однако со слишком большими пакетами данных происходит быстрое уменьшение алгоритмической отдачи, и непонятно, почему эти ограничения оказываются крупнее для одних задач и мельче для других.
Читать полностью »

Grasp2Vec: обучение представлению объектов через захват с самостоятельным обучением - 1

Люди с удивительно раннего возраста уже способны распознавать свои любимые объекты и поднимать их, несмотря на то, что их специально этому не учат. Согласно исследованиям развития когнитивных способностей, возможность взаимодействия с объектами окружающего мира играет критическую роль в развитии таких способностей, как ощущение и манипулирование объектами – к примеру, целенаправленный захват. Взаимодействуя с окружающим миром, люди могут учиться, исправляя собственные ошибки: мы знаем, что мы сделали, и учимся на результатах. В робототехнике такой тип обучения с самостоятельным исправлением ошибок активно исследуется, поскольку он позволяет роботизированным системам учиться без огромного количества тренировочных данных или ручной подстройки.

Мы в Google, вдохновившись концепцией постоянства объектов, предлагаем систему Grasp2Vec – простой, но эффективный алгоритм построения представления объектов. Grasp2Vec основан на интуитивном понимании того, что попытка поднять любой объект выдаст нам некоторую информацию – если робот захватит объект и поднимет его, то объекту нужно находиться в этом месте до захвата. Кроме того, робот знает, что если захваченный объект находится в его захвате, то, значит, объекта уже нет на том месте, где он был. Используя такую форму самостоятельного обучения, робот может научиться распознавать объект благодаря визуальному изменению сцены после его захвата.
Читать полностью »

Всем привет! Компании «Нейросети Ашманова» и «Наносемантика» приглашают всех желающих принять участие в 3-м всероссийском Тесте Тьюринга в 2019 году, который мы организуем.

image

Мы ранее проводили этот конкурс в 2015 и 2016 годах вместе с Фондом Сколково и Microsoft.
В 2019 году Тест Тьюринга пройдёт на крупнейшей конференции по искусственному интеллекту OpenTalks.ai.
Под катом – даты, подробности проведения и ссылка на регистрацию участников.
Читать полностью »

Роботизация может вести к диктатуре - 1

Предыдущая статья на тему замены человека роботом получила большое количество комментариев. Получается, тема живая не только в наших головах.

Поскольку мы сами вносим вклад в роботизацию как в контексте обучения в нашей Школе, так и в контексте проектов, которые мы делаем, то невольно нам приходится задумываться на предмет того, куда в пределе этот процесс может вести и как избежать сопутствующих ему угроз.

В этой публикации мы решили отчасти ответить на комментарии из предыдущей статьи, отчасти немного дальше развить тему. Если кто-то не читал изначальную публикацию — предлагаем это сделать, а также комментарии к ней.

Итак, давайте временно не будем спорить о том, случится так, что роботы смогут заменить человека или нет. Не случится — ок. Но, вот если случится, то дальнейшее нам видится так:Читать полностью »

В начале декабря в Монреале прошла 32-ая ежегодная конференция Neural Information Processing Systems, посвященная машинному обучению. По неофициальному табелю о рангах эта конференция является топ-1 событием подобного формата в мире. Все билеты на конференцию в этом году были раскуплены за рекордные 13 минут. У нас большая команда data scientist’ов МТС, но лишь одному из них – Марине Ярославцевой (magoli) – посчастливилось попасть в Монреаль. Вместе с Данилой Савенковым (danila_savenkov), который остался без визы и следил за конференцией из Москвы, мы расскажем о работах, показавшихся нам наиболее интересными. Эта выборка очень субъективна, но, надеемся, она заинтересует вас.

image
Читать полностью »

Что делать с людьми, которых заменят роботы? - 1

В этой предновогодней публикации мы решили немного порассуждать о будущем в мире роботов и о роли человека в нем.

Предсказывать будущее в наши дни стало абсолютным must have среди экспертов. Когда технологии меняют мир настолько стремительно, очень хочется заглянуть хотя бы на несколько лет вперед. Цели разные. Потребителям — пофантазировать, восхититься и/или ужаснуться, бизнесам — скорректировать планы, политикам — продумать меры по сохранению спокойствия в социуме на случай «большого технологического шухера».Читать полностью »

С 30 ноября по 2 декабря в Москве прошел PicsArt AI hackathon c призовым фондом — 100,000$. Основной задачей было сделать AI решение для обработки фото или видео, которое можно будет использовать в приложение PicsArt. Коллега по работе(на тот момент) Артур Кузин предложил поучаствовать, заинтересовав меня идеей — анонимизация личных фотографий пользователей с сохранением деталей(мимики и т.д). Также Артур позвал Илью Кибардина — студента МФТИ (кому-то же нужно было писать код). Название родилось очень быстро: DeepAnon.

Как мы не выиграли хакатон - 1

Это будет рассказ про наше решение, его деградацию развитие, хакатон, и как не надо подстраиваться под жюри.

Читать полностью »

5G глазами пользователей. Ожидания и опасения - 1

Согласно заявлениям представителей ведущих сотовых операторов Европы и США, первые 5G-смартфоны появятся в продаже в 2019 году, к этому времени уже будет подготовлена необходимая инфраструктура. В преддверии этого события мы решили спросить у пользователей смартфонов, зачем им 5G и чего они ждут от нового поколения связи, а также наглядно показать, какие еще возможности может им предоставить 5G.
Читать полностью »

Нижегородский офис компании Intel, помимо прочего, занимается разработкой алгоритмов компьютерного зрения на основе глубоких нейронных сетей. Для обучения моделей требуется множество размеченных данных. Теоретически, существует много способов подготовить их, однако наличие специализированного программного обеспечения многократно ускоряет этот процесс. Так, в целях повышения эффективности и качества разметки, мы разработали собственный инструмент – Computer Vision Annotation Tool (CVAT).

Computer Vision Annotation Tool: универсальный подход к разметке данных - 1
Читать полностью »

Искусственный интеллект был создан для принятия организационных решений и государственного управления; он нуждается в человеческой этике, заявляет Джонни Пенн из Кембриджского университета

Искусственный интеллект (ИИ) повсюду, но он придуман полностью не историческим способом. Чтобы понять влияние ИИ на нашу жизнь, важно оценить обстановку, в котором он был создан. В конце концов, статистика и государственный контроль развивались рука об руку в течение сотен лет.

Рассмотрим информатику. Его происхождение прослеживается не только аналитической философией, чистой математикой и Аланом Тьюрингом, но и что удивительно, историей государственного управления. В книге «Правительственная машина: революционная история компьютера», изданной в 2003 году, Джон Агар из Университетского колледжа Лондона рисует диаграммы развития британской гражданской службы, как она увеличилась с 16 000 сотрудников в 1797 году до 460 000 к 1999 году. Он заметил, аномальное сходство между функциональностью человеческой бюрократии и электронно-вычислительной машиной. (Он признался, что не может утверждать, было ли это наблюдение тривиальным или глубоким).

Обе системы обрабатывали большое количество информации, используя иерархию предварительно установленных, но адаптируемых правил. Но один из них происходил от другого. Это показало важную связь между организацией социальных структур людей и цифровыми инструментами, предназначенными для их обслуживания. Г-н Агар связывает само происхождение информатики с Аналитической маши́ной Чарльза Бэббиджа, разработанной в 1820-х годах в Британии. Ее разработка была субсидирована правительством, предполагая, что она будет служить его спонсору. Проекты Бэббиджа, отмечает г-н Агар, следует рассматривать как «материализацию государственной деятельности».Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js