Рубрика «искусственные нейронные сети» - 2

Применение искусственного интеллекта в постановке диагнозов уже не за горами. И даже ближе, чем кажется. Ведь сразу двум исследовательским командам по обе стороны Атлантики удалось-таки решить проблему «черного ящика» ИИ в медицине.

Проблема «черного ящика» заключается в том, что система ИИ при выдаче результатов, а в медицине это постановка диагноза и рекомендации по дальнейшей терапии, не предоставляет обоснований, которые, в частности, требует Управление по контролю за продуктами и лекарствами (FDA) в США.

В декабре минувшего года Массачусетская многопрофильная больница (Massachusetts General Hospital) сообщила о том, что смогла научить ИИ «объяснять» поставку диагноза при внутричерепном кровотечении. Пятью месяцами ранее британская компания DeepMind, приобретенная Google в 2014 году, заявила об аналогичном прорыве в диагностике глазных заболеваний.Читать полностью »

I see you: машинное обучение и искусственные нейронные сети в изучении зрения дрозофил - 1

Далеко не все люди любят насекомых. Чего уж скрывать, некоторые их откровенно боятся. Но это не значит, что наши маленькие соседи по планете существуют исключительно ради того, чтобы гоняться за людьми с фобией, впутываться им в волосы, чтоб те кричали «Снимите это с меня! Снимите!». Любой живой организм на планете обладает своими необыкновенными, порой неповторимыми умениями и характеристиками. Если говорить о человеке, то среди прочего это будет передвижение на двух конечностях, противопоставленный большой палец руки и т.д. Изучая такие особенности, ученые лучше понимают наш мир и существ его населяющих. Также многие исследования с животными или насекомыми подталкивали ученых к открытиям в областях, не связанных с биологией. Сегодня мы поговорим об исследовании, главным героем которого является существо, доставляющее немало хлопот в летние месяцы — плодовая мушка дрозофила. Ученые решили ответить на вопрос — как видит мир вокруг себя дрозофила? И речь пойдет далеко не только о зрительном аппарате. Машинное обучение, искусственные нейронные сети — и все это ради столь малого существа. Что смогли узнать ученые, как работала и создавалась их «искусственная мушка» и какова польза такого странного на первый взгляд исследования? Давайте поищем ответы в докладе ученых. Поехали.Читать полностью »

Машинное обучение: схватка с комнатным слоном - 1

Один — ноль в пользу человеческого мозга. В новом исследовании ученые-информатики выяснили, что системам искусственного интеллекта не удается пройти тест на зрительное распознавание объектов, с которым легко справится любой ребенок.

«Это качественное и важное исследование напоминает нам, что „глубокое обучение" на самом не может похвастаться той глубиной, которая ему приписывается», — говорит Гэри Маркус, нейробиолог из Нью-Йоркского университета, не связанный с этой работой.

Результаты исследования касаются сферы компьютерного зрения, когда системы искусственного интеллекта пытаются обнаружить и категоризировать объекты. Например, их могут попросить найти всех пешеходов в уличной сцене или просто отличить птицу от велосипеда — задание, которое уже успело прославиться своей сложностью.

Ставки высоки: компьютеры постепенно начинают выполнять за людей важные операции, такие как автоматическое видеонаблюдение и автономное вождение. И для успешной работы необходимо, чтобы способности ИИ к зрительной обработке как минимум не уступали человеческим.

Задача не из легких.Читать полностью »

Реконструкция изображения: 1 км оптоволокна, искусственная нейронная сеть и глубокое обучения - 1

В наше время оптические волокна стали неотъемлемой частью самых разных сфер жизни человека: от домашнего интернета до эндоскопии. Использование оптических волокон обусловлено целым рядом преимуществ: скорость передачи, физическая прочность, пропускная способность, информационная безопасность и т.д.

Дабы увеличить пропускную способность было создано многомодовое оптоволокно (MMF), когда информация передается по нескольким параллельным каналам. Несмотря на все свои достоинства, MMF имеет и ряд недостатков, один из которых исследователи решили ликвидировать, дабы усовершенствовать процесс передачи изображений. Суть такова: когда образец проецируется на проксимальную сторону MMF, изображение, которое мы получаем на дистальной стороне, представляет собой спекл, поскольку его входящие данные распределяются по множеству мод с разной степенью распространения вдоль длины волокна. Ученые предлагают использовать комбинацию многомодового волокна и глубокое обучение для искусственных нейронных сетей, чтобы получать точные изображения, в том числе и при использовании эндоскопии. Давайте покопаемся в отчете исследователей и попробуем понять как это работает и какие дает результаты. Поехали.Читать полностью »

Не сверточные сети - 1

Достоинства, проблемы и ограничения сверточных нейронных сетей (CNN) в настоящее время достаточно неплохо изучены. Прошло уже около 5 лет после признания их сообществом инженеров и первое впечатление «вот теперь решим все задачи», хочется верить, уже прошло. А значит, пришло время искать идеи, которые позволят сделать следующий шаг в области ИИ. Хинтон, например, предложил CapsuleNet.
Вместе с Алексеем Редозубовым, опираясь на его идеи об устройстве мозга, мы тоже решили отступить от мейнстрима. И сейчас у меня есть что показать: архитектуру (идёт заглавной картинкой для привлечения внимания) и исходники на Tensorflow для MNIST.

Более формально, результат описан в статье на arxiv.
Читать полностью »

Предотвращение негативных последствий при разработке систем искусственного интеллекта, превосходящих человеческий разум - 1

Статей о том, что совсем скоро придут башковитые роботы и всех поработят бесконечное множество. Под катом еще одна заметка. Предлагаем вам ознакомиться с переводом выступления Нейтана Суареса, посвящённого определению целей систем искусственного интеллекта в соответствии с задачами оператора. На этот доклад автора вдохновила статья «Настройка искусственного интеллекта: в чем сложность и с чего начать», которая является основой для исследований в сфере настройки искусственного интеллекта.
Читать полностью »

В МТИ запустили нейросеть, генерирующую пугающие изображения - 1

Незадолго до празднования самого жуткого дня в году команда из Массачусетского технологического института запустила «Машину кошмаров». Вдохновившись классическими «ужастиками» и возможностями искусственного интеллекта, Пинар Янардаг, Мануэль Кебриан и Ияд Равхан научили нейронную сеть создавать из популярных достопримечательностей мрачные городские пейзажи, а из лиц знаменитостей — пугающие портреты. Читать полностью »

Доброго времени суток, уважаемыее! Сегодня я хотел бы поговорить о том, как не имея особого опыта в машинном обучении, можно попробовать свои силы в соревнованиях, проводимых Kaggle.

image

Как вам уже, наверное, известно, Kaggle – это платформа для исследователей разных уровней, где они могут опробовать свои модели анализа данных на серьезных и актуальных задачах. Суть такого ресурса – не только в возможности получить неплохой денежный приз в случае, если именно ваша модель окажется лучшей, но и в том (а, это, пожалуй, гораздо важнее), чтобы набраться опыта и стать специалистом в области анализа данных и машинного обучения. Ведь самый важный вопрос, зачастую стоящий перед такого рода специалистами – где найти реальные задачи? Здесь их достаточно.

Мы попробуем поучаствовать в обучающем соревновании, не предусматривающем каких-либо поощрений, кроме опыта.
Читать полностью »

1. Сравнение и преимущества нейронных систем перед математическими алгоритмами

Все знают, что такое нейрон. Более-менее знакомы с нейронными сетями. Все имеют представление, что такое искусственные нейронные сети, по крайней мере, слышали о них. Я поставил себе задачу вполне поверхностную — показать в этой публикации возможности применения нейронных сетей в робототехнике и их преимущество перед другими системами, логическими. Напомню лишь, что искусственные нейронные сети построены по принципу работы естественных нейронных сетей, которые имеются у живых существ. Это могут быть насекомые, птицы, рыбы или животные, стоящие более высоко в интеллектуальном развитии. К примеру, как обезьяны или человек. Всех их объединяет одно, это нейронная сеть. У кого-то она более развита и более сложная. У кого-то находится в примитивном виде и работает по принципу «раздражитель-реакция». Кстати сказать, и высокоинтеллектуальные животные, такие, как человек, очень часто в повседневной жизни действуют по принципу «раздражитель-реакция». Если мы обожжем руку, то не думая, резко её отдёргиваем. Тут не нужно много ума, чтобы это сделать. Но случаются в жизни ситуации, когда требуется применить то, под чем мы подразумеваем слово «интеллект». А что это такое, никто не знает. Есть несколько формулировок, описывающих интеллект. Но, для робототехника это абстракция, от которой пользы ноль, с помощью которой не построишь «интеллектуального» робота.
Читать полностью »

Алгоритм Улучшенной Самоорганизующейся Растущей Нейронной Сети (ESOINN)

Введение

В моей предыдущей статье о методах машинного обучения без учителя был рассмотрен базовый алгоритм SOINN — алгоритм построения самоорганизующихся растущих нейронных сетей. Как было отмечено, базовая модель сети SOINN имеет ряд недостатков, не позволяющих использовать её для обучения в режиме lifetime (т.е. для обучения в процессе всего срока эксплуатации сети). К таким недостаткам относилась двухслойная структура сети, требующая при незначительных изменениях в первом слое сети переобучать второй слой полностью. Также алгоритм имел много настраиваемых параметров, что затрудняло его применение при работе с реальными данными.

В этой статье будет рассмотрен алгоритм An Enhanced Self-Organizing Incremental Neural Network, являющийся расширением базовой модели SOINN и частично решающий озвученные проблемы.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js