Рубрика «ImageNet»

Нейронные сети предпочитают текстуры и как с этим бороться - 1

В последнее время вышло несколько статей с критикой ImageNet, пожалуй самого известного набора изображений, использующегося для обучения нейронных сетей.

В первой статье Approximating CNNs with bag-of-local features models works surprisingly well on ImageNet авторы берут модель, похожую на bag-of-words, и в качестве "слов" используют фрагменты из изображения. Эти фрагменты могут быть вплоть до 9х9 пикселей. И при этом, на такой модели, где полностью отсутствует какая-либо информация о пространственном расположении этих фрагментов, авторы получают точность от 70 до 86% (для примера, точность обычной ResNet-50 составляет ~93%).

Во второй статье ImageNet-trained CNNs are biased towards texture авторы приходят к выводу, что виной всему сам набор данных ImageNet и то, как изображения воспринимают люди и нейронные сети, и предлагают использовать новый датасет – Stylized-ImageNet.

Более подробно о том, что на картинках видят люди, а что нейронные сети Читать полностью »

Новый алгоритм в 200 раз ускоряет автоматическое проектирование нейросетей - 1

ProxylessNAS напрямую оптимизирует архитектуры нейронных сетей для конкретной задачи и оборудования, что позволяет значительно увеличить производительность по сравнению с предыдущими прокси-подходами. На наборе данных ImageNet нейросеть проектируется за 200 GPU-часов (в 200−378 раз быстрее аналогов), а автоматически спроектированная модель CNN для мобильных устройств достигает того же уровня точности, что и MobileNetV2 1.4, работая в 1,8 раза быстрее.

Исследователи из Массачусетского технологического института разработали эффективный алгоритм для автоматического дизайна высокопроизводительных нейросетей для конкретного аппаратного обеспечения, пишет издание MIT News.

Алгоритмы для автоматического проектирования систем машинного обучения — новая область исследований в сфере ИИ. Такая техника называется «поиск нейронной архитектуры (neural architecture search, NAS) и считается трудной вычислительной задачей.
Читать полностью »

ИИ от Google обучил дочерний ИИ, который превосходит все ИИ, созданные человеком - 1

В мае 2017 года исследователи из Google Brain представили проект AutoML, который автоматизирует проектирование моделей машинного обучения. Эксперименты с AutoML показали, что эта система может генерировать маленькие нейросети с очень хорошими показателями — вполне сравнимые с нейросетями, которые спроектированы и обучены экспертами-людьми. Однако поначалу возможности AutoML были ограничены маленькими научными наборами данных вроде CIFAR-10 и Penn Treebank.

Инженеры Google задумались — а что если поставить перед генератором ИИ более серьёзные задачи? Способна ли эта система ИИ сгенерировать другую ИИ, которая будет лучше созданного человеком ИИ в какой-нибудь важной задаче вроде классификации объектов из базы ImageNet — самого известного из крупномасштабных наборов данных в машинном зрении. Так появилась нейросеть NASNet, созданная практически без участия человека.
Читать полностью »

Как HBO делала приложение Not Hotdog для сериала «Кремниевая долина» - 1

Сериал HBO «Кремниевая долина» выпустил настоящее приложение ИИ, которое распознаёт хотдоги и не-хотдоги, как приложение в четвёртом эпизоде четвёртогого сезона (приложение сейчас доступно для Android, а также для iOS!)

Чтобы добиться этого, мы разработали специальную нейронную архитектуру, которая работает непосредственно на вашем телефоне, и обучили её с помощью TensorFlow, Keras и Nvidia GPU.
Читать полностью »

Меня зовут Пётр Ромов, я — data scientist в Yandex Data Factory. В этом посте я предложу сравнительно простой и надежный способ начать карьеру аналитика данных.

Многие из вас наверняка знают или хотя бы слышали про Kaggle. Для тех, кто не слышал: Kaggle — это площадка, на которой компании проводят конкурсы по созданию прогнозирующих моделей. Её популярность столь велика, что часто под «кэглами» специалисты понимают сами конкурсы. Победитель каждого соревнования определяется автоматически — по метрике, которую назначил организатор. Среди прочих, Kaggle в разное время опробовали Facebook, Microsoft и нынешний владелец — Google. Яндекс тоже несколько раз отметился. Как правило, Kaggle-сообществу дают решать задачи, довольно близкие к реальным: это, с одной стороны, делает конкурс интересным, а с другой — продвигает компанию как работодателя с солидными задачами. Впрочем, если вам скажут, что компания-организатор конкурса задействовала в своём сервисе алгоритм одного из победителей, — не верьте. Обычно решения из топа слишком сложны и недостаточно производительны, а погони за тысячными долями значения метрики не настолько и нужны на практике. Поэтому организаторов больше интересуют подходы и идейная часть алгоритмов.

Спортивный анализ данных, или как стать специалистом по data science - 1

Kaggle — не единственная площадка с соревнованиями по анализу данных. Существуют и другие: DrivenData, DataScience.net, CodaLab. Кроме того, конкурсы проводятся в рамках научных конференций, связанных с машинным обучением: SIGKDD, RecSys, CIKM.

Для успешного решения нужно, с одной стороны, изучить теорию, а с другой — начать практиковать использование различных подходов и моделей. Другими словами, участие в «кэглах» вполне способно сделать из вас аналитика данных. Вопрос — как научиться в них участвовать?

Читать полностью »

Оптимизм по поводу нейронных сетей разделяют не все — или, по крайней мере, уровень такого оптимизма бывает разным. Старший преподаватель факультета компьютерных наук ВШЭ Сергей Бартунов согласен, что нейросетевая область сейчас на подъеме. С другой стороны, он хочет внести в происходящее некоторую ясность, определить реальный потенциал нейросетей. Вне зависимости от точки зрения докладчика, глубокое обучение и правда не проникает в нашу сферу совсем уж стремительными темпами. Традиционные методы обучения всё ещё работают и не обязательно будут вытеснены машинным интеллектом в ближайшей будущем.

Под катом — расшифровка лекции и часть слайдов Сергея.

Читать полностью »

Обзор топологий глубоких сверточных нейронных сетей - 1 Это будет длиннопост. Я давно хотел написать этот обзор, но sim0nsays меня опередил, и я решил выждать момент, например как появятся результаты ImageNet’а. Вот момент настал, но имаджнет не преподнес никаких сюрпризов, кроме того, что на первом месте по классификации находятся китайские эфэсбэшники. Их модель в лучших традициях кэгла является ансамблем нескольких моделей (Inception, ResNet, Inception ResNet) и обгоняет победителей прошлого всего на полпроцента (кстати, публикации еще нет, и есть мизерный шанс, что там реально что-то новое). Кстати, как видите из результатов имаджнета, что-то пошло не так с добавлением слоев, о чем свидетельствует рост в ширину архитектуры итоговой модели. Может, из нейросетей уже выжали все что можно? Или NVidia слишком задрала цены на GPU и тем самым тормозит развитие ИИ? Зима близко? В общем, на эти вопросы я тут не отвечу. Зато под катом вас ждет много картинок, слоев и танцев с бубном. Подразумевается, что вы уже знакомы с алгоритмом обратного распространения ошибки и понимаете, как работают основные строительные блоки сверточных нейронных сетей: свертки и пулинг.

Читать полностью »

Нейросеть Microsoft победила Google и Intel в конкурсе на распознавание изображений - 1

Программа Microsoft Research первенствовала в нескольких категориях на шестом ежегодном конкурсе по распознаванию изображений ImageNet. Ей удалось превзойти конкурентные системы от Google, Intel, Qualcomm и Tencent, а также от ряда стартапов и научно-исследовательских лабораторий (результаты).

Система-чемпион носит название "Deep Residual Learning for Image Recognition", и к конкурсу в свободном доступе опубликована статья с описанием технических принципов её работы.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js