Всем привет!
Приближается запуск курса «Web-разработчик на Python», соответственно, мы всё так же делимся интересными статьями и приглашаем на наши открытые уроки, где можно посмотреть интересный материал, познакомиться с преподавателями и позадавать им вопросы.
Поехали!
HDF5 позволяет эффективно хранить большие объемы данных
При работе с большими объемами данных, будь то экспериментальные или имитируемые, их хранение в нескольких текстовых файлах не очень эффективно. Иногда вам нужно получить доступ к конкретному подмножеству данных, и вы хотите сделать это быстро. В этих ситуациях формат HDF5 решает обе проблемы благодаря очень оптимизированной надстроенной библиотеке. HDF5 широко используется в научных средах и имеет отличную реализацию в Python, предназначенную для работы с NumPy прямо из коробки.
Формат HDF5 поддерживает файлы любого размера, и каждый файл имеет внутреннюю структуру, которая позволяет вам искать определенный набор данных. Это можно представить как отдельный файл со своей собственной иерархической структурой, так же как набор папок и подпапок. По умолчанию данные хранятся в двоичном формате, и библиотека совместима с разными типами данных. Одним из наиболее важных вариантов формата HDF5 является то, что он позволяет прикреплять метаданные к каждому элементу структуры, что делает его идеальным для создания автономных файлов.