По запросу R или Python в интернете вы найдёте миллионы статей и километровых обсуждений по теме какой из них лучше, быстрее и удобнее для работы с данными. Но к сожалению особой пользы все эти статьи и споры не несут.

Цель этой статьи — сравнить основные приёмы обработки данных в наиболее популярных пакетах обоих языков. И помочь читателям максимально быстро овладеть тем, который они ещё не знают. Для тех кто пишет на Python узнать как выполнять всё то же самое в R, и соответственно наоборот.
В ходе статьи мы разберём синтаксис наиболее популярных пакетов на R. Это пакеты входящие в библиотеку tidyverse
, а также пакет data.table
. И сравним их синтаксис с pandas
, наиболее популярным пакетом для анализа данных в Python.
Мы пошагово пройдём весь путь анализа данных от их загрузки до выполнения аналитических, оконных функций средствами Python и R.