Рубрика «gpgpu» - 9

Ресурса Bright Side Of News ссылаясь на свои источники пишет, что новым руководителем Intel может стать один из основателей и генеральный директор Nvidia — Джен-Сен Хуан (Jen-Hsun Huang).
И тогда сама компания Nvidia может быть приобретена корпорацией Intel.

Известно, что ранее Intel уже делала попытки поглотить Nvidia (после того как AMD поглотила компанию ATI), но сам Джен-Сен Хуан, пользующийся широкой поддержкой совета директоров, не соглашался на условия предлагаемые Intel. Кроме того были большие сомнения, что антимонопольные органы США разрешат данное слияние.
Возможность же получения должности гендиректора Intel может изменить позицию Джен-Сен Хуана.
Читать полностью »

Здравствуй!

Несколько лет назад в прикладных целях я реализовал обычный Force-based визуализатор графов.

На меня произвело впечатление, как простые итеративные преобразования могут производить субъективно сложные и интересные вычисления, формируя нетривиальные визуально-кинетические модели.

Со временем возникло несколько идей, что интересного можно смоделировать.

Вот что получилось с одной из них:

Читать полностью »

Как создать рендерер, который бы работал даже на компьютере вашей бабушки? Изначально перед нами стояла немного другая задача — создать unbiased рендер для всех моделей GPU: NVidia, ATI, Intel.
Хотя идея такого рендера для всех видеокарт витала в воздухе давно, до качественной реализации, тем более на Direct3D, дело не доходило. В своей работе мы пришли к весьма дикой связке и дальше расскажем, что нас к ней привело и как она работает.

renderbro resource combined
Читать полностью »

в 20:00, , рубрики: CUDA, gpgpu, Nvidia, метки: , ,

При использовании средств параллельных вычислений весьма вероятно может сложиться ситуация, когда алгоритм содержит два таких последовательных этапа: i) каждый j-ый поток сохраняет некоторый промежуточный результат вычисления в j-ой ячейке памяти, а, затем, ii) этот поток должен использовать результаты одного или более «соседних» потоков. Очевидно, что необходимо организовать в коде программы некий барьер по времени, который каждым потоком преодолевается уже после того, как все сохранят свои промежуточные результаты в соответствующих ячейках памяти (этап (i)). В противном случае, какой-то поток может перейти к этапу (ii), пока какие-то другие потоки еще не завершили этап (i). Как это ни прискорбно, но создатели CUDA посчитали, что такой специальный встроенный механизм синхронизации любого числа потоков на одном GPU не нужен. Так как же можно бороться с этой напастью? Хотя Google, судя по подсказкам, и знаком с данным вопросом, но готового удовлетворительного рецепта под свою задачу найти не удалось, а на пути к достижению желаемого результата для новичка (которым я и являюсь) имеются некоторые подводные камни.

Читать полностью »

Вступление

Недавно, почитав различных статей и презентаций про GPGPU, я решил тоже попробовать для себя программирование под видеокарты. Фактически, выбор технологий в этой области не велик — сейчас живы и развиваются только CUDA (проприетарный стандарт nVidia) и OpenCL (свободный стандарт, работает на GPU от ATI, nVidia, а также на центральных процессорах). В связи с тем, что мой ноутбук располагает видеокартой ATI (Mobility Radeon 5650 HD), то выбор и вовсе свёлся к одному варианту — OpenCL. В этой статье речь пойдёт о процессе изучения OpenCL с нуля, а также о том, что из этого получилось.
Читать полностью »

На Github выложен исходный код компилятора Rootbeer, с помощью которого можно почти любой Java-код запустить на графическом процессоре, а также легко разделить Java-программу на фрагменты для CPU/GPU.

Компилятор опубликован под свободной лицензией GNU GPLv3, он прошёл тщательное тестирование и вполне пригоден для использования. По словам автора, это самый продвинутый транслятор байткода Java на платформу CUDA. Судя по всему, OpenCL тоже поддерживается.

Автор программы — преподаватель Сиракузского университета Фил Пратт-Желига (Phil Pratt-Szeliga).
Читать полностью »

в 6:45, , рубрики: gpgpu, opencl, python, метки: , ,

В последнее время параллельные вычисления прочно входят в жизнь, в частности, с использованием GPU.

Здесь было много статей на эту тему, поэтому ограничусь лишь поверхностным описанием технологии. GPGPU — использование графических процессоров для задач общего назначения, т.е. не связанных напрямую с рендерингом. Пример — библиотека Nvidia PhysX для расчёта физики в некоторых современных играх. Эта технология выгодна тем, что GPU хороши на параллельном выполнении с множеством потоков. Правда, потоков должно быть много, иначе производительность сильно упадет. Ещё из-за особенностей работы с памятью приходится несколько хитрить с передачей данных из оперативной памяти в видеопамять. Известные реализации: CUDA (Nvidia, только для видеокарт), OpenCL (Khronos Group, для гетерогенных систем) и AMD FireStream. Здесь будет обсуждаться только OpenCL.

Итак, приступим к практике. В качестве языка основной программы выберем Python. Он, конечно, не очень быстр сам по себе, зато отлично работает как «клей» — во многих применениях основной расчёт идёт в OpenCL, а код на Python только «подносит патроны». Существует отличная библиотека PyOpenCL, которой и будем пользоваться.

Читать полностью »

Итак, прошел почти год с момента моего первого поста о программировании видеокарт и страшилок о том, как это все сложно. Теперь настала пора показать, что все не так плохо и как пользоваться этой странной штукой по имени OpenCL, да еще и использовать его главное преимущество, то есть возможность запускать один и тот же код на разных девайсах. А еще я покажу как можно получить на порядок большую производительность обычного процессора практически бесплатно.
Читать полностью »

Всем привет!
В начале апреля я увидел анонс новой видеокарты от nVidia, с новым мажорным индексом compute capability – 3.0. Внимательно изучив спеки был удивлён – по всему выходило, что теперь ветвления будут приводить к самым худшим последствиям: большим потерям производительности. Мне нравилось, что от версии к версии ветвления играют всё меньшую роль, а Kepler показался в этом плане шагом назад. Мозгом я понимал, что такое вряд ли возможно и решил немного выждать.
И вот на этой неделе мне пришёл whitepaper по новой числодробилке на архитектуре Kepler и многое прояснил.
Читать полностью »

Пол года назад я искал себе видеокарту, на которой я смог бы заниматься 3d моделированием, и рендерингом на GPU. В связи с появлением на рынке большого числе рендеров на CUDA мне не терпелось приобрести видеокарту с поддержкой CUDA, а именно Nvidia.

Как некоторые уже знают, Nvidia выставляет на продажу видеокарты нескольких моделей Geforce, Quadro, Tesla, ION, Tegra. В этом коротком сравнении упустим ION и Tegra, т.к. предназначены для мобильных устройств и слабые по производительности.

Нам нужна мощь!
Nvidia для профессиональных 3D приложений

Nvidia power...

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js