Рубрика «глубокое обучение» - 9

Что читать о нейросетях - 1

Нейросети переживают второй Ренессанс. Сначала еще казалось, что сообщество, решив несколько прикладных задач, быстро переключится на другую модную тему. Сейчас очевидно, что спада интереса к нейросетям в ближайшем будущем не предвидится. Исследователи находят новые способы применения технологий, а следом появляются стартапы, использующие в продукте нейронные сети.

Стоит ли изучать нейросети не специалистам в области машинного обучения? Каждый для себя ответит на этот вопрос сам. Мы же посмотрим на ситуацию с другой стороны — что делать разработчикам (и всем остальным), которые хотят больше знать про методы распознавания образов, дискриминантный анализ, методы кластеризации и другие занимательные вещи, но не хотят расходовать на эту задачу лишние ресурсы.

Ставить перед собой амбициозную цель, с головой бросаться в онлайн-курсы — значит потратить много времени на изучение предмета, который, возможно, вам нужен лишь для общего развития. Есть один проверенный (ретроградный) способ, занимающий по полчаса в день. Книга — офлайновый источник информации. Книга не может похвастаться актуальностью, но за ограниченный период времени даст вам фундаментальное понимание технологии и способов ее возможной реализации под ваши задачи.

Читать полностью »

image

Сразу оговорюсь, что данный пост не несет большой технической нагрузки и должен восприниматься исключительно в режиме «пятничной истории». Кроме того, текст насыщен английскими словами, какие-то из них я не знаю как перевести, а какие-то просто не хочется переводить.

Краткое содержание первой части:
1. DSTL (научно-техническая лаборатория при министерстве обороны Великобритании) провела соревнование на Kaggle.
2. Соревнование закончилось 7 марта, результаты объявлены 14 марта.
3. Пять из десяти лучших команд — русскоговорящие, причем все они являются членами сообщества Open Data Science.
4. Призовой фонд в $100,000 разделили брутальный малазиец Kyle, команда Романа Соловьева и Артура Кузина, а также я и Сергей Мушинский.
5. По итогам были написаны блог-посты (мой пост, пост Артура, наш с Серегой пост на Kaggle), проведены выступления на митапах (мое выступление в Adroll, мое выстпление в H20.ai, выступление Артура в Yandex, выступление Евгения Некрасова в Mail.Ru Group), написан tech report на arxiv.

Организаторам понравилось качество предложенных решений, но не понравилось, сколько они за это соревнование отстегнули. В Каggle ушло $500k, в то время как призовые всего $100k.
Читать полностью »

Системы глубокого обучения, основанные на имитации накопления знаний искусственными нейронными сетями, получили возможность усваивать информацию значительно быстрее и эффективнее. Совместная команда исследователей из Массачусетского технологического института (MIT) и других стран разработала новый подход к обучению с использованием света вместо электричества. Результаты их исследований были описаны 12 июня в журнале Nature Photonics научным сотрудником MIT Йиченом Шеном (Yichen Shen), аспирантом Николасом Харрисом (Nicholas Harris), профессорами Марином Солжачиком (Marin Soljacic) и Дирком Энглундом (Dirk Englund).

В MIT разработали фотонный чип для глубокого обучения - 1Читать полностью »

До конца года остаётся 213 дней, так что самое время начать изучать что-то новое, например, погрузиться в науку о нейронных сетях. Сегодня за один день мы познакомимся с устройством нейросетей в прямом эфире, начиная с простых архитектур и заканчивая глубоким обучением — сетями, в которых десятки и сотни слоев. Также рассмотрим сверточные сети, применяемые для распознавания изображений, и рекуррентные сети для анализа последовательностей. Причем вы сможете вместе с нами обучить нейронную сеть для решения нетривиальных задач — от распознавания рукописных цифр до узнавания котиков на фотографиях.

Наука о нейронных сетях. Прямой эфир - 1
Читать полностью »

Как учится и отвечает на вопросы когнитивная система IBM Watson. Часть 1 - 1

За последний десяток лет технологии шагнули далеко вперед. Интернет вещей, облачные системы, формы искусственного интеллекта, нейросети и когнитивные технологии. Все это появилось относительно недавно, но все это активно меняет нашу жизнь. IBM прикладывает значительные усилия, чтобы изменения были положительными. Делается все это не удовольствия ради, а с вполне практической целью. Дело в том, что потребности современной науки и бизнеса чрезвычайно велики. И для того, чтобы эти потребности удовлетворять, необходимы новые инструменты. Один из них — IBM Watson, когнитивная платформа, которая способная учиться, выявлять связи между отдельными элементами крупнейшего массива данных, а также взаимодействовать со своим окружением, включая пользователей.

На Habrahabr и Geektimes наша компания не раз рассказывала о том, какую пользу может принести IBM Watson. Но как работает система? В целом, ее возможности основаны на анализе окружающей среды и различных факторов. Благодаря этому платформа способна принимать определенные решения и давать ответы на задаваемые вопросы. Ниже – относительно краткое изложение принципов работы нескольких составляющих работы когнитивной системы. Это обучение, обработка языка и ответы на вопросы.
Читать полностью »

Нейрокурятник часть ноль. Или нейро- без курятника. Или как правильно закоптиться в нейросети.

image
Курочка снесла яичко. Сам процесс выглядит ужасно. Результат — съедобно. Массовый геноцид кур.
В этой статье будет описано:

  1. Где, как и почему можно получить небольшое качественное самообразование в сфере работы с нейросетями БЕСПЛАТНО, СЕЙЧАС и СОВСЕМ НЕ БЫСТРО;
  2. Будет описана логика рекурсии и будут порекомендованы книги по теме;
  3. Будет описан список основных терминов, которые нужно разобрать на 2-3 уровня абстракции вниз;
  4. Будет приведен ipynb-notebook, который содержит необходимые ссылки и базовые подходы;
  5. Будет немного своеобразного саркастичного юмора;
  6. Будут описаны некоторые простые закономерности, с которыми вы столкнетесь при работе с нейросетями;

Статьи про нейрокурятник

Заголовок спойлера

  1. Вступление про обучение себя нейросетям
  2. Железо, софт и конфиг для наблюдения за курами
  3. Разметка датасетов
  4. Параллельное участие в соревнованиях, визуализации внутренностей нейросетей, развитие архитектур моделей
  5. Работающая модель для распознавания кур в курятнике
  6. Бот, который постит события из жизни кур

Читать полностью »

Друзья! Мы приглашаем вас 15 апреля на российский финал нашего главного студенческого конкурса программных проектов — Imagine Cup! (регистрация, онлайн-трансляция)

Приглашаем на Imagine Cup: 15 апреля 2017 г. состоится российский финал конкурса - 1

В этом году Imagine Cup исполняется 15 лет. За все эти годы конкурс видоизменялся, в нём появлялись новые категории, он путешествовал по миру, пока не обосновался в Сиэтле. В этом году мы снова вернулись «к истокам», и рассматриваем на конкурсе студенческие проекты любой направленности, использующие современные облачные технологии, при этом основной упор делается именно на технологичности.

Но кое-что поменялось. Приходите 15 апреля в Digital October, чтобы узнать шокирующие новости об изменениях в Imagine Cup, сколько команд поедут представлять Россию на конкурсе в Сиэтле, а также чтобы отпраздновать вместе с нами! А если не можете прийти — смотрите онлайн-трансляцию!
Читать полностью »

Kaggle: Британские спутниковые снимки. Как мы взяли третье место - 1

Сразу оговорюсь, что данный текст — это не сухая выжимка основных идей с красивыми графиками и обилием технических терминов (такой текст называется научной статьей и я его обязательно напишу, но потом, когда нам заплатят призовые $20000, а то, не дай бог, начнутся разговоры про лицензию, авторские права и прочее). К моему сожалению, пока устаканиваются все детали, мы не можем поделиться кодом, который написали под эту задачу, так как хотим получить деньги. Как всё утрясётся — обязательно займемся этим вопросом.

Так вот, данный текст — это скорее байки по мотивам, в которых, с одной стороны, всё — правда, а с другой, обилие лирических отступлений и прочей отсебятины не позволяет рассматривать его как что-то наукоемкое, а скорее просто как полезное и увлекательное чтиво, цель которого показать, как может происходить процесс работы над задачами в дисциплине соревновательного машинного обучения. Кроме того, в тексте достаточно много лексикона, который специфичен для Kaggle и что-то я буду по ходу объяснять, а что-то оставлю так, например, вопрос про гусей раскрыт не будет.
Читать полностью »

IBM добавит глубокое обучение для мэйнфреймов - 1

Мэйнфреймы работают в крупнейших компаниях мира, включая банки, страховые компании, ритейлеров и авиакомпании. Несмотря на становящиеся все более популярными облачные сервисы, мэйнфреймы остаются в строю благодаря своей огромной производительности. Например, современный мэйнфрейм IBM z Systems способен обрабатывать в режиме реального времени около 2,5 млрд транзакций в день — это эквивалент транзакций, которые были бы обработаны за 100 киберпонедельников.

Сейчас IBM планирует добавить поддержку части своих когнитивных сервисов для мэйнфреймов для более эффективной обработки данных, предложив глубокое обучение для всех пользователей своих мэйнфреймов. Планируется добавить эту возможность для любой технологии компании, которая имеет отношение к большим данным в случае, когда информация хранится за файерволом, что IBM называет «частным облаком».
Читать полностью »

Искусственный интеллект, машинное обучение и глубокое обучение уже сейчас являются неотъемлемой частью многих предприятий. Часто эти термины используются как синонимы.

Искусственный интеллект движется огромными шагами — от достижений в области беспилотных транспортных средств и способности обыгрывать человека в такие игры, как покер и Го, к автоматизированному обслуживанию клиентов. Искусственный интеллект — это передовая технология, которая готова произвести революцию в бизнесе.

Часто термины искусственный интеллект, машинное обучение и глубокое обучение используются бессистемно как взаимозаменяемые, но, на самом деле, между ними есть различия. Чем именно различаются эти термины будет рассказано далее.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js