Рубрика «глубокое обучение» - 12

Представляем вам завершающую статью из цикла по Deep Learning, в которой отражены итоги работы по обучению ГСНС для изображений из определенных областей на примере распознавания и тегирования элементов одежды. Предыдущие части вы найдете под катом.

Deep Learning: Cочетание глубокой сверточной нейронной сети с рекуррентной нейронной сетью - 1
Читать полностью »

Из уважения к тем из вас, кто на дух не переносит здесь рекламу, сразу сообщим — да, это рекламный пост. Можно проскроллить дальше. Тем, кто считает, что реклама не всегда вредна и порой помогает принимать нам важные решения, добро пожаловать под кат.
Читать полностью »

В предыдущей статье из цикла «Deep Learning» вы узнали о сравнении фреймворков для символьного глубокого обучения. В этом материале речь пойдет о глубокой настройке сверточных нейронных сетей для повышения средней точности и эффективности классификации медицинских изображений.

Deep Learning: Transfer learning и тонкая настройка глубоких сверточных нейронных сетей - 1
Читать полностью »

Как искусственный интеллект меняет рынок чипов - 1

Менее, чем за 12 часов, три разных человека предложили мне деньги за то, чтобы я час разговаривал с незнакомым человеком по телефону.

Все они сказали, что им понравилась моя статья про то, как Google создаёт новый компьютерный чип для ИИ, и все они упрашивали меня обсудить эту тему с их клиентом. Каждый описал своего клиента как менеджера большого хедж-фонда, но не назвал его имени.

Запросы пришли от так называемых экспертных сетей – исследовательских фирм, связывающих инвесторов с людьми, которые могут помочь первым понять определённые рынки и обеспечить конкурентное преимущество (иногда, судя по всему, через инсайдерскую информацию). Эти экспертные сети желали, чтобы я объяснил, как ИИ-процессор от Google повлияет на рынок чипов. Но сначала они потребовали подписать для них соглашение о неразглашении. Я отказался.
Читать полностью »

Представляем вам перевод серии статей посвященных глубокому обучению. В первой части описан выбор фреймворка с отрытым кодом для символьного глубокого обучения, между MXNET, TensorFlow, Theano. Автор подробно сравнивает преимущества и недостатки каждого из них. В следующих частях вы узнаете о тонкой настройке глубоких сверточных сетей, а также о сочетании глубокой сверточной нейронной сети с рекуррентной нейронной сетью.

Deep Learning: Сравнение фреймворков для символьного глубокого обучения - 1
Читать полностью »

Можем ли мы вскрыть чёрный ящик искусственного интеллекта? - 1

Дин Помело [Dean Pomerleau] всё ещё помнит, как ему впервые пришлось столкнуться с проблемой «чёрного ящика». В 1991 году он делал одну из первых попыток в той области, которая сейчас изучается всеми, кто пытается создать робомобиль: обучение компьютера вождению.

А это означало, что нужно сесть за руль специально подготовленного Хамви (армейского вседорожника), и покататься по улицам города. Так рассказывает об этом Помело, в ту пору бывший аспирантом по робототехнике в Университете Карнеги-Меллон. Вместе с ним катался и компьютер, запрограммированный следить через камеру, интерпретировать происходящее на дороге и запоминать все движения водителя. Помело надеялся, что машина в итоге построит достаточно ассоциаций для самостоятельного вождения.

За каждую поездку Помело тренировал систему несколько минут, а затем давал ей порулить самостоятельно. Всё вроде бы шло хорошо – пока однажды Хамви, подъехав к мосту, не повернул внезапно в сторону. Человеку удалось избежать аварии, только быстро схватив руль и вернув управление.
Читать полностью »

Привет! Последнее время все больше и больше достижений в области искусственного интеллекта связано с инструментами глубокого обучения или deep learning. Мы решили разобраться, где же можно научиться необходимым навыкам, чтобы стать специалистом в этой области.

image
Читать полностью »

Теперь каждый может стать профессионалом в машинном обучении - 1
Марк Хэммонд в штаб-квартире Bonsai в пригороде Беркли

Вы успешно играете в футбол, снимаетесь в популярном кино, или удачливо играете на бирже? Поздравляю – вы почти так же ценны, как специалист по обработке данных или по машинному обучению с докторской степенью из Стэнфорда, MIT или Карнеги-Меллон. По крайней мере, всё выглядит именно так. Все компании в Кремниевой долине – а в принципе, уже и не только там – лихорадочно соревнуются, чтобы получить такой приз-человека. Это нечто вроде охоты на трюфели в исполнении менеджеров по персоналу. По мере того, как предприятия понимают, что их соперники полагаются на искусственный интеллект (ИИ) и машинное обучение (МО), количество вакансий для этих специалистов будет постоянно повышаться.

Но что, если вы могли бы получить преимущества ИИ без найма дорогих и талантливых специалистов? Что, если умный софт понизит планочку? Можно ли получить преимущества глубокого обучения (ГО) без особых талантов?
Читать полностью »

Ограничения формального обучения, или Почему роботы не умеют танцевать - 1

80-е годы в лаборатории информатики и искусственного интеллекта MIT казались сторонним наблюдателям чем-то вроде золотого века, но изнутри Дэвид Чапман мог наблюдать, что зима уже наступает. Будучи членом лаборатории, Чапман стал первым исследователем, применившим математику теории вычислительной сложности к роботизированному планированию, а также, к тому, чтобы показать отсутствие реального обобщённого метода создания ИИ, способного составлять план для обработки всех непредвиденных обстоятельств. Он заключил, что хотя ИИ уровня человека и может быть в принципе возможен, ни у одного из доступных нам подходов нет надежды достичь этого уровня.

В 1990-м Чапман написал, впоследствии широко распространившееся, предложение об исследовании, в котором призывал опробовать новый подход и другую задачу для ИИ: научить робота танцевать. Танец, как писал Чапман, был важной моделью, поскольку «он не достигает целей. Нельзя выиграть или проиграть. Это не задача, требующая решения. Танец – это процесс взаимодействия». Танцующие роботы требовали резкой смены приоритетов исследователей ИИ, чьи техники были построены вокруг задач типа шахмат, с чёткой структурой и недвусмысленными целями. Сложность создания танцующих роботов требовала ещё большей смены наших предположений по поводу того, что такое интеллект.
Читать полностью »

Действительно ли искусственный интеллект непостижим? - 1

Дмитрий Малютов мало что может рассказать о своём творении.

Он работает в исследовательском отделе IBM, и часть своего времени посвящает созданию систем машинного обучения, решающих задачи корпоративных клиентов компании. Одна такая программа разрабатывалась для большой страховой компании. Задание было непростым, требовался сложный алгоритм. Когда пришло время объяснять результаты клиенту, возникла заминка. «Мы не могли объяснить им эту модель, потому что они не разбирались в машинном обучении».

А даже если бы и разбирались, это могло им не помочь. Потому что моделью была искусственная нейросеть, программа, принимающая данные нужного типа – в нашем случае, дела клиентов страховой компании – и находившая в них шаблоны. Подобные сети используются на практике уже полстолетия, но недавно они испытали возрождение, и помогают совершать прорывы везде, от распознавания речи и переводов до игры в Go и робомобилей.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js