Рубрика «глубинное обучение»

TLDR: кому перестановки делают больнее — меряем свёрткой графов.
Код: RolX и ванильная трёхслойная GCN на мотифах.

Выгорание на рабочем месте повстречал ещё в начале своей карьеры — и с тех пор живо интересуюсь этим вопросом. Представьте обстановку. Большой проект внедрения SAP. Высокие ставки. Амбициозные сроки. Нагрузку каждый воспринимал по-своему. Кто-то сорвался и самоустранился от выполнения обязанностей, кто-то стал токсичнее, у меня самого в какой-то момент чувство юмора пропало. Ненадолго.

image

Управление изменениями (дисциплина, направленная на снижение напряжения во время внедрения информационных систем) многим обязана медикам. Во-первых, сам феномен эмоционального выгорания впервые зафиксировали у медицинских работников. Во-вторых, первое масштабное исследование, обобщающее 68 кейсов значительных перемен в английских госпиталях, открыло правила успеха для агентов изменения. Кроме того, моделирование эпидемий решает задачу максимизации влияния и позволяет внедрять нововведения быстрее и естественнее через (суб)оптимально выбранных людей на нужных местах.

Всё больше медучреждений перепрофилируют и это вызывает у работников ожидаемый стресс. Покажем, как его можно измерить, а уж где знаки препинания в заголовке ставить — решайте сами.Читать полностью »

День защиты персональных данных, Минск, 2019 год. Организатор: правозащитная организация Human Constanta.

Ведущий (далее – В): – Артур Хачуян занимается… Можно сказать «на тёмной стороне» в контексте нашей конференции?

Артур Хачуян (далее – АХ): – На стороне корпораций – да.

В: – Он собирает ваши данные, продаёт их корпорациям.

АХ: – На самом деле нет…

В: – И он как раз расскажет, как корпорации могут использовать ваши данные, что происходит с данными, когда они попадают в онлайн. Он не будет, наверное, рассказывать, что с этим делать. Мы подумаем дальше…

«На чём корпорации вертели вашу приватность», Артур Хачуян (Tazeros Global) - 1

АХ: – Расскажу, расскажу. На самом деле долго рассказывать не буду, но на предыдущем мероприятии мне представили человека, которому «Фейсбук» даже аккаунт собаки заблокировал.
Всем привет! Меня зовут Артур. Я действительно занимаюсь обработкой и сбором данных. Конечно же, я не продают никому никакие персональные данные в открытом доступе. Шучу. Моя сфера деятельности – это извлечение знаний из данных, находящихся в открытых источниках. Когда что-то юридически является не персональными данными, но из этого можно извлечь знания и сделать их такими же по значимости, как если бы эти данные были получены из персональных данных. Ничего на самом деле страшного рассказывать не буду. Здесь, правда, про Россию, но про Белоруссию у меня тоже есть цифры.Читать полностью »

Артур Хачуян — известный российский специалист по обработке больших данных, основатель компании Social Data Hub (сейчас Tazeros Global). Партнёр НИУ ВШЭ. Подготовил и представил совместно с НИУ ВШЭ законопроект по Big Data в Совете Федерации Выступал в институте Кюри в Париже, СПБГУ, ФУ при Правительстве РФ, на Red Apple, International OpenDataDay, RIW 2016, AlfaFuturePeople.

Лекция записана на open-air фестивале «Гик-пикник» в Москве в 2019 году.

Артур Хачуян: искусственный интеллект в маркетинге - 1

Артур Хачуян (далее – АХ): – Если из огромного количества отраслей – из медицины, из строительства, из чего-то, чего-то выбирать то, где технология больших данных, машинного обучения, глубинного обучения наиболее часто используется, то это, наверное, маркетинг. Потому что последние где-то года три всё, что окружает нас в каких-то рекламных коммуникациях, сейчас завязано именно на анализ данных и именно на том, что можно назвать искусственным интеллектом. Поэтому сегодня буду рассказывать вам про это из такой, очень отдалённой истории…Читать полностью »

75%

3 из 4 — так Boston Consulting Group оценивает долю IT проектов, почивших по не-техническим причинам.

Уже вот две подряд редакции свода знаний по управлению проектами (PMBOK) выделяют процессы по управлению стейкхолдерами в отдельную область знаний под счастливым номером 13 и настоятельно рекомендуют учитывать:

1. связи между ними,
2. центры влияния, а также
3. культуру общения — для повышения шансов на успех.

Вопрос один:

 доколе инженеры о стейкхолдерах будут судить догадками?

image

ФОТО: Шариф Хамза для Dazed & Confuzed, модель — Люпита Нионго

В свете недавней безоговорочной победы русской математики над вопросом хроматических чисел рассмотрим сценарий применения стремительно набирающей популярность среди занимающихся машинным обучением теории графов к причине провала большинства IT проектов. Приложим вполне естественную науку о вычислениях к областям, ранее считавшимся 'мягкими'. И покажем, как современные модели позволяют организацию в эпоху перемен измерить. Стратегия решения — простая, двухшаговая — строим граф связей стейкхолдеров, а из него — нейросеть сворачиваем. И пока самообучаемые алгоритмы выполняют непростые управленческие задачи, снимая менеджерских проблем ворох с плеч человеческих — пьём кофе с пироженками.

Читать полностью »

image

Эта статья об агентах машинного обучения в Unity написана Майклом Лэнхемом — техническим новатором, активным разработчиком под Unity, консультантом, менеджером и автором многих игр на движке Unity, графических проектов и книг.

Разработчики Unity внедрили поддержку машинного обучения и в частности глубинного обучения с подкреплением ради создания SDK глубинного обучения с подкреплением (deep reinforcement learning, DRL) для разработчиков игр и симуляций. К счастью, команда Unity под руководством Дэнни Лэнджа успешно реализована надёжный и современный движок DRL, способный показывать впечатляющие результаты. В качестве основы движка DRL Unity использует модель proximal policy optimization (PPO); эта модель значительно сложнее и в некоторых аспектах может отличаться.

В этой статье я познакомлю вас с инструментами и SDK для создания агентов DRL в играх и симуляциях. Несмотря на новизну и мощь этого инструмента, его легко использовать и он имеет вспомогательные инструменты, позволяющие осваивать концепции машинного обучения на ходу. Для работы с туториалом необходимо установить движок Unity.
Читать полностью »

В прошлом месяце на NVIDIA GTC 2019 компания NVIDIA представила новое приложение, которое превращает нарисованные пользователем простые цветные шарики в великолепные фотореалистичные изображения.

Приложение построено на технологии генеративно-состязательных сетей (GAN), в основе которой лежит глубинное обучение. Сама NVIDIA называет его GauGAN — это каламбур-отсылка к художнику Полу Гогену. В основе функциональности GauGAN лежит новый алгоритм SPADE.

В этой статье я объясню, как работает этот инженерный шедевр. И чтобы привлечь как можно больше заинтересованных читателей, я постараюсь дать детализированное описание того, как работают свёрточные нейронные сети. Поскольку SPADE — это генеративно-состязательная сеть, я расскажу подробнее и о них. Но если вы уже знакомы с эти термином, вы можете сразу перейти к разделу «Image-to-image трансляция».

Генерация изображений

Давайте начнем разбираться: в большинстве современных приложений глубинного обучения используется нейронный дискриминантный тип (дискриминатор), а SPADE — это генеративная нейронная сеть (генератор).
Читать полностью »

Свёрточные нейросети отлично справляются с классификацией искажённых изображений, в отличие от людей

У нейросетей удивительно простая стратегия классификации изображений - 1

В данной статье я покажу, почему передовые глубинные нейросети прекрасно могут распознавать искажённые изображения и как это помогает раскрыть удивительно простую стратегию, используемую нейросетями для классификации естественных фотографий. У этих открытий, опубликованных в ICLR 2019, есть много последствий: во-первых, они демонстрируют, что найти «решение» ImageNet гораздо проще, чем считалось. Во-вторых, они помогают нам создавать более интерпретируемые и понятные системы классификации изображений. В-третьих, они объясняют несколько явлений, наблюдаемых в современных свёрточных нейросетях (СНС), к примеру, их склонность к поиску текстур (см. другую нашу работу в ICLR 2019 и соотв. запись в блоге), и игнорирование пространственного расположения частей объекта.
Читать полностью »

Как научить искусственный интеллект здравому смыслу - 1

Пять лет назад программисты из DeepMind, лондонской компании, специализирующейся на ИИ, радостно наблюдали за тем, как ИИ самостоятельно учился играть в классическую аркадную игру. Они использовали модную технологию глубинного обучения (ГО) для, казалось, странной задачи: овладения игрой в Breakout, сделанной в компании Atari, в которой нужно отбивать шарик от кирпичной стены, чтобы кирпичики исчезали.

ГО – это самообучение для машин; вы скармливаете ИИ огромные количества данных, и он постепенно начинает самостоятельно распознавать закономерности. В данном случае данными было происходящее на экране – крупные пиксели представляли кирпичи, шарик и ракетку. В ИИ DeepMind, нейросеть, состоящую из расположенных слоями алгоритмов, не было заложено никаких знаний по поводу правил игры Breakout, его принципов работы, целей и методов игры. Программисты просто позволили нейросети изучать результаты каждого действия, каждого отскока шарика. К чему это приведёт?
Читать полностью »

Никакого духа в машине нет

«Возрождение ИИ» – не более, чем дорогое железо и реклама, брошенные на реализацию старой идеи - 1

В последние несколько лет СМИ захлестнули преувеличенные описания технологий искусственного интеллекта (ИИ) и машинного обучения (МО). Кажется, что ещё ни разу в области информатики не было такого, чтобы столько смехотворных заявлений делало такое количество людей, обладающих таким малым представлением о происходящем. Для любого человека, активно занимавшегося передовым компьютерным оборудованием в 1980-х, происходящее кажется странным.

В номере The Atlantic за этот месяц интеллектуал высокого полёта и автор бестселлеров "Sapiens. Краткая история человечества" и " Homo Deus: Краткая история завтрашнего дня", Юваль Ной Харари описывает влияние ИИ на демократию. Самым интересным аспектом статьи является чрезмерная вера Харари в возможности современных технологий ИИ. Он описывает товарища Google, программу для игры в шахматы от компании DeepMind, как «творческую», «обладающую воображением» и «гениальными инстинктами».
Читать полностью »

Системы машинного зрения могут распознавать лица на одном уровне с людьми и даже создавать реалистичные искусственные лица. Но исследователи обнаружили, что эти системы не могут распознать оптические иллюзии, а значит, и создать новые.

Нейросети не понимают, что такое оптические иллюзии - 1

Зрение человека – удивительный аппарат. Хотя оно развивалось в определённой окружающей среде миллионы лет, оно способно на такие задачи, которые никогда не попадались ранним зрительным системам. Хорошим примером будет чтение, или определение искусственных объектов – машин, самолётов, дорожных знаков, и т.п.

Но у зрительной системы есть хорошо известный набор недостатков, воспринимаемых нами, как оптические иллюзии. Исследователи определили уже много вариантов, в которых эти иллюзии заставляют людей неправильно оценивать цвет, размер, взаимное расположение и движение.

Сами по себе иллюзии интересны тем, что дают представление о природе зрительной системы и восприятия. Поэтому будет очень полезно придумать способ находить новые иллюзии, которые помогут изучить ограничения этой системы.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js