Предыдущая статья с подборкой моделей для русского
Предыдущая статья с подборкой моделей для русского
После сборки домашнего сервера для работы с LLM DeepSeek-R1 подробно о нём можно прочитать в статье Локальный DeepSeek-R1-0528. Когда скорость улитки – не приговор, а точка старта возникла потребность сравнить разные квантизации для оптимизации скорости/качества работы. Запуская работу с разными моделями, я заметил что квантизация зачастую приводит к ускорению генерации токенов.
Читать полностью »
У меня возникло желание запустить локальную версию DeepSeek R1 и V3. Это связано с необходимостью избежать рисков связанных с блокировками доступа и утечкой данных. Ещё добавилось желание протестировать разнообразные настройки LLM. До этого момента я пробовал запускать разные небольшие модели исключительно на cpu. А вот опыта с большими моделями не было.
Некоторое время назад я был в восторге от Ollama: простое скачивание моделей одной консольной командой, наличие SDK для NodeJS и Python, OpenAI-подобное API. Однако, так как отрасль рынка активно развивается, инструмент с каждым днем становится менее конкурентноспособным
Пункты ниже заставят вас задуматься рассмотреть другой инструмент запуска GGUF, например: LMStudio, LocalAI, KoboldCPP, vLLM или llama-server
Модели-шизофреники c тысячами загрузок