Рубрика «генерация изображений» - 3

Алгоритм коллапса волновой функции (Wavefunction Collapse Algorithm) учит компьютер импровизировать. На входе он получает архетипичные данные и создаёт процедурно генерируемые данные, похожие на исходные.

Доступное объяснение алгоритма коллапса волновой функции - 1

(Источник)

Чаще всего он используется для создания изображений, но может также строить города, скейтпарки и писать ужасные стихи.

Доступное объяснение алгоритма коллапса волновой функции - 2

(Источник)

Коллапс волновой функции — это очень независимо мыслящий алгоритм, не требующий практически никакой помощи или инструкций извне. Вам нужен только пример стиля, которого нужно достичь, а всё остальное он сделает сам. Несмотря на свою самодостаточность, он на удивление прост. Он не использует никаких нейронных сетей, случайных лесов или чего-то другого, похожего на машинное обучение. Если разобраться с идеей, он станет для вас очень понятным и интуитивным.

Большинство реализаций и объяснений коллапса волновой функции — это полная, оптимизированная по скорости версия алгоритма. Разумеется, все они важны и необходимы, но в них сложно разобраться с нуля. В этом посте я буду объяснять всё понятным я простым языком, сосредоточившись на версии Wavefunction с ограничениями, которую я назвал Even Simpler Tiled Model. Кроме того, я выложил пример реализации ESTM на Github. Код в нём неэффективный и медленный, но очень хорошо читаемый и подробно прокомментирован. Как только вы разберётесь в технологии, лежащей в основе ESTM, то станете ближе к пониманию более сложных версий алгоритма. Если хотите понять алгоритм коллапса волновой функции, то эта статья будет хорошим началом.
Читать полностью »

В МТИ создали модель ИИ, которая распознает и изменяет состав пиццы - 1

Исследователи Массачусетского технологического института нашли еще одно применение для технологий распознавания изображений. Разработанная ими модель PizzaGAN определяет набор ингредиентов в пицце по фотографии и вносит в нее коррективы, добавляя или убирая любые топпинги по запросу.
Читать полностью »

Разработка российской команды реалистично анимирует лица по одному кадру - 1

Новый проект от группы российских исследователей из Сколково знаменует очередной этап в развитии технологий распознавания и генерации лиц. Созданная ими нейросеть синтезирует динамичные изображения людей на базе любого числа доступных изображений, начиная с одного.
Читать полностью »

Нейросеть генерирует изображения блюд по рецептам их приготовления - 1
Сравнение настоящих фотографий (вверху), сгенерированных изображений с семантической регуляризацией (средний ряд) и без неё

Группа исследователей из Тель-Авивского университета разработала нейронную сеть, способную генерировать изображения блюд по их текстовым рецептам. Таким образом, домохозяйка может заранее посмотреть, что получится в итоге, если изменить тот или иной пункт рецепта: добавить новый ингридиент или убрать какой-то из существующих. В принципе, эта научная работа — хорошая идея для коммерческого приложения, тем более что исходный код программы опубликован в открытом доступе.
Читать полностью »

T2F: проект преобразования текста в рисунок лица при помощи глубинного обучения - 1

Код проекта доступен в репозитории

Введение

Когда я читал описания внешнего вида персонажей в книгах, мне всегда было интересно, как бы они выглядели в жизни. Вполне можно представить себе человека в целом, но описание наиболее заметных деталей – задача сложная, и результаты разнятся от человека к человеку. Много раз у меня не получалось представить себе ничего, кроме весьма размытого лица у персонажа до самого конца произведения. Только когда книгу превращают в фильм, размытое лицо заполняется деталями. К примеру, я никогда не мог представить себе, как именно выглядит лицо Рэйчел из книжки "Девушка в поезде". Но когда вышел фильм, я смог сопоставить лицо Эмили Блант с персонажем Рэйчел. Наверняка у людей, занимающихся подбором актёров, уходит много времени на то, чтобы правильно изобразить персонажей сценария.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js